in

Varied diets, including broadleaved forage, are important for a large herbivore species inhabiting highly modified landscapes

  • 1.

    Lambert, J. E. & Rothman, J. M. Fallback foods, optimal diets, and nutritional targets: primate responses to varying food availability and quality, In Annual Review of Anthropology, Vol 44 (eds. Brenneis, D. & Strier, K. B.) 493–512 (2015).

  • 2.

    Herrel, A. et al. Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. Proc. Natl. Acad. Sci. USA 105, 4792–4795 (2008).

  • 3.

    Ripple, W. J. & Beschta, R. L. Wolves, elk, willows, and trophic cascades in the upper Gallatin Range of Southwestern Montana, USA. For. Ecol. Manag. 200, 161–181 (2004).

    • Article
    • Google Scholar
  • 4.

    White, R. G. Foraging patterns and their multiplier effects on productivity of northern ungulates. Oikos 40, 377–384 (1983).

    • Article
    • Google Scholar
  • 5.

    Proffitt, K. M., Hebblewhite, M., Peters, W., Hupp, N. & Shamhart, J. Linking landscape-scale differences in forage to ungulate nutritional ecology. Ecol. Appl. 26, 2156–2174 (2016).

  • 6.

    Herfindal, I., Saether, B.-E., Solberg, E. J., Andersen, R. & Hogda, K. A. Population characteristics predict responses in moose body mass to temporal variation in the environment. J. Anim. Ecol. 75, 1110–1118 (2006).

  • 7.

    Wam, H. K., Hjeljord, O. & Solberg, E. J. Differential forage use makes carrying capacity equivocal on ranges of Scandinavian moose (Alces alces). Can. J. Zool. 88, 1179–1191 (2010).

    • Article
    • Google Scholar
  • 8.

    Langvatn, R., Albon, S. D., Burkey, T. & CluttonBrock, T. H. Climate, plant phenology and variation in age of first reproduction in a temperate herbivore. J. Anim. Ecol. 65, 653–670 (1996).

    • Article
    • Google Scholar
  • 9.

    Solberg, E., Garel, M., Heim, M., Grotan, V. & Saether, B. E. Lack of compensatory body growth in a high performance moose Alces alces population. Oecologia 158, 485–498 (2008).

  • 10.

    Beckerman, A., Benton, T. G., Ranta, E., Kaitala, V. & Lundberg, P. Population dynamic consequences of delayed life-history effects. Trends in Ecol. Evol. 17, 263–269 (2002).

    • Article
    • Google Scholar
  • 11.

    Felton, A. M., Wam, H. K., Stolter, C., Mathisen, K. M. & Wallgren, M. The complexity of interacting nutritional drivers behind food selection, a review of northern cervids. Ecosphere 9, e02230, https://doi.org/10.1002/ecs2.2230 (2018).

    • Article
    • Google Scholar
  • 12.

    Iason, G., Dicke, M. & Hartley, S. The integrative roles of plant secondary metabolites in natural systems, In The ecology of plant secondary metabolites from genes to global processes (eds. Iason, G., Dicke, M. & Hartley, S.) 1–9 (Cambridge University Press, 2012).

  • 13.

    Payn, T. et al. Changes in planted forests and future global implications. For. Ecol. Manag. 352, 57–67 (2015).

    • Article
    • Google Scholar
  • 14.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

  • 15.

    Kuijper, D. P. J. et al. Do ungulates preferentially feed in forest gaps in European temperate forest? For. Ecol. Manag. 258, 1528–1535 (2009).

    • Article
    • Google Scholar
  • 16.

    Lindbladh, M., Axelsson, A.-L., Hultberg, T., Brunet, J. & Felton, A. From broadleaves to spruce – the borealization of southern Sweden. Scand. J. For. Res. 29, 686–696 (2014).

    • Article
    • Google Scholar
  • 17.

    Apollonio, M., Andersen, R. & Putman, R. European Ungulates and Their Management in the 21 stCentury. (Cambridge University Press, 2010).

  • 18.

    Vivas, H. J. & Saether, B. E. Interactions between a generalist herbivore, the moose Alces alces, and its food resources – an experimental study of winter foraging behavior in relation to browse availability. J. Anim. Ecol. 56, 509–520 (1987).

    • Article
    • Google Scholar
  • 19.

    Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69 (2009).

    • Article
    • Google Scholar
  • 20.

    Wam, H. K., Felton, A. M., Stolter, C., Nybakken, L. & Hjeljord, O. Moose selecting for specific nutritional composition of birch places limits on food acceptability. Ecol. Evol. 8, 1117–1130 (2018).

  • 21.

    Wam, H. K. & Hjeljord, O. Moose summer and winter diets along a large scale gradient of forage availability in southern Norway. Europ. J. Wildl. Res. 56, 745–755 (2010).

    • Article
    • Google Scholar
  • 22.

    Pettorelli, N. et al. The response of fawn survival to changes in habitat quality varies according to cohort quality and spatial scale. J. Anim. Ecol. 74, 972–981 (2005).

    • Article
    • Google Scholar
  • 23.

    Solberg, E. J., Loison, A., Gaillard, J. M. & Heim, M. Lasting effects of conditions at birth on moose body mass. Ecography 27, 677–687 (2004).

    • Article
    • Google Scholar
  • 24.

    Tiilikainen, R., Solberg, E. J., Nygren, T. & Pusenius, J. Spatio-temporal relationship between calf body mass and population productivity in Fennoscandian moose Alces alces. Wildl. Biol. 18, 304–317 (2012).

    • Article
    • Google Scholar
  • 25.

    Sand, H. Life history patterns in female moose (Alces alces): The relationship between age, body size, fecundity and environmental conditions. Oecologia 106, 212–220 (1996).

  • 26.

    Ericsson, G., Wallin, K., Ball, J. P. & Broberg, M. Age-related reproductive effort and senescence in free-ranging moose, Alces alces. Ecology 82, 1613–1620 (2001).

    • Article
    • Google Scholar
  • 27.

    Moe, T. et al. Sex ratio variation in harvested moose (Alces alces) calves: does it reflect population calf sex ratio or selective hunting? Europ. J. Wildl. Res. 55, 217–226 (2009).

    • Article
    • Google Scholar
  • 28.

    SOU. Bilaga 6: Utfodring och attityder till utfodring i Sverige, in Vildsvin och viltskador – om utfodring, kameraövervakning och arrendatorers jakträtt. Report 2014:54 Statens Offentliga Utredningar (ed Swedish Government) 9 (2014).

  • 29.

    Bergqvist, G., Wallgren, M., Jernelid, H. & Bergstrom, R. Forage availability and moose winter browsing in forest landscapes. For. Ecol. Manag. 419, 170–178 (2018).

    • Article
    • Google Scholar
  • 30.

    Felton, A. M. et al. Interactions between ungulates, forests and supplementary feeding: the role of nutritional balancing in determining outcomes. Mammal Res. 62, 1–7 (2017).

    • Article
    • Google Scholar
  • 31.

    Wam, H. K., Histöl, T., Nybakken, L., Solberg, E. J. & Hjeljord, O. Transient nutritional peak in browse foliage after forest clearing advocates cohort management of ungulates. Basic Appl. Ecol. 17, 252–261 (2016).

    • Article
    • Google Scholar
  • 32.

    Westoby, M. Analysis of diet selection by large generalist herbivores. Amer. Nat. 108, 290–304 (1974).

    • Article
    • Google Scholar
  • 33.

    Berteaux, D., Crete, M., Huot, J., Maltais, J. & Ouellet, J. P. Food choice by white-tailed deer in relation to protein and energy content of the diet: a field experiment. Oecologia 115, 84–92 (1998).

  • 34.

    Parsons, A. J., Newman, J. A., Penning, P. D., Harvey, A. & Orr, R. J. Diet preference of sheep – effects of recent diet, physiological state and species abundance. J. Anim. Ecol. 63, 465–478 (1994).

    • Article
    • Google Scholar
  • 35.

    Shipley, L. A., Blomquist, S. & Danell, K. Diet choices made by free-ranging moose in northern Sweden in relation to plant distribution, chemistry, and morphology. Can. J. Zool. 76, 1722–1733 (1998).

    • Article
    • Google Scholar
  • 36.

    Månsson, J., Kalen, C., Kjellander, P., Andren, H. & Smith, H. Quantitative estimates of tree species selectivity by moose (Alces alces) in a forest landscape. Scand. J. For. Res. 22, 407–414 (2007).

    • Article
    • Google Scholar
  • 37.

    Felton, A. M. et al. The nutritional balancing act of a large herbivore: an experiment with captive moose (Alces alces L). PLoS ONE 11, e0150870, https://doi.org/10.1371/journal.pone.0150870 (2016).

  • 38.

    Cederlund, G., Ljungqvist, H., Markgren, G. & Stålfelt, G. Foods of moose and roe-deer at Grimsö in central Sweden: results of rumen content analyses. Swed. Wildl. Res. 11, 171–247 (1980).

    • Google Scholar
  • 39.

    Provenza, F. D. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manag. 48, 2–17 (1995).

    • Article
    • Google Scholar
  • 40.

    Simpson, R. J. & Raubenheimer, D. The nature of nutrition: a unifying framework from animal adaptation to human obesity. (Princeton University Press, 2012).

  • 41.

    Sorensen, A., van Beest, F. M. & Brook, R. K. Impacts of wildlife baiting and supplemental feeding on infectious disease transmission risk: a synthesis of knowledge. Prev. Vet. Med. 113, 356–363 (2014).

    • Article
    • Google Scholar
  • 42.

    Mueller, D. W. H. et al. Mating system, feeding type and ex situ conservation effort determine life expectancy in captive ruminants. Proc. Royal Soc. B-Biol. Sci. 278, 2076–2080 (2011).

    • Article
    • Google Scholar
  • 43.

    Malmsten, A., Dalin, A. M. & Pettersson, A. Caries, periodontal disease, supernumerary teeth and other dental disorders in Swedish wild boar (Sus scrofa). J. Comp. Path. 153, 50–57 (2015).

  • 44.

    Kamler, J. & Homolka, M. The importance of cultivated plants in the diet of red and roe deer and mouflon. Acta Univ. Agri. Silvi. Mendelianae Brunensis 64, 813–819 (2016).

    • Article
    • Google Scholar
  • 45.

    Milner, J. M., Van Beest, F. M., Schmidt, K. T., Brook, R. K. & Storaas, T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. The J. Wildl. Manag. 78, 1322–1334 (2014).

    • Article
    • Google Scholar
  • 46.

    Hjeljord, O. & Histol, T. Range-body mass interactions of a northern ungulate – a test of hypothesis. Oecologia 119, 326–339 (1999).

  • 47.

    Skogsstyrelsen. Statistik om formellt skyddad skogsmark, frivilliga avsättningar, hänsynsytor samt improduktiv skogsmark. Report 2019/18 (ed. Hultgren, B.) 100 (Swedish Forest Agency, 2019).

  • 48.

    Dussault, C. et al. Linking moose habitat selection to limiting factors. Ecography 28, 619–628 (2005).

    • Article
    • Google Scholar
  • 49.

    Bjørneraas, K. et al. Moose Alces alces habitat use at multiple temporal scales in a human-altered landscape. Wildl. Biol. 17, 44–54 (2011).

    • Google Scholar
  • 50.

    Herfindal, I. et al. Weather affects temporal niche partitioning between moose and livestock. Wildl. Biol. wlb.00275; https://doi.org/10.2981/wlb.00275 (2017).

  • 51.

    Torres, R. T., Carvalho, J. C., Panzacchi, M., Linnell, J. D. C. & Fonseca, C. Comparative use of forest habitats by roe deer and moose in a human-modified landscape in southeastern Norway during winter. Ecol. Res. 26, 781–789 (2011).

    • Article
    • Google Scholar
  • 52.

    Laforge, M. P., Michel, N. L. & Brook, R. K. Spatio-temporal trends in crop damage inform recent climate-mediated expansion of a large boreal herbivore into an agro-ecosystem. Scientific Reports 7, 15203, https://doi.org/10.1038/s41598-017-15438-x (2017).

  • 53.

    Mysterud, A., Solberg, E. J. & Yoccoz, N. G. Ageing and reproductive effort in male moose under variable levels of intrasexual competition. J. Anim. Ecol. 74, 742–754 (2005).

    • Article
    • Google Scholar
  • 54.

    Goude, M. Can differences in leaf area, biomass and nitrogen content explain the production differences between Scots pine (Pinus sylvestris) and Norway spruce (Picea abies)? MSc thesis, Swedish University of Agricultural Sciences, (2016).

  • 55.

    Flojgaard, C., De Barba, M., Taberlet, P. & Ejrnaes, R. Body condition, diet and ecosystem function of red deer (Cervus elaphus) in a fenced nature reserve. Glob. Ecol. Cons. 11, 312–323 (2017).

    • Google Scholar
  • 56.

    Nichols, R. V., Akesson, M. & Kjellander, P. Diet assessment based on rumen contents: a comparison between DNA metabarcoding and macroscopy. Plos One, 11, https://doi.org/10.1371/journal.pone.0157977 (2016).

  • 57.

    SLU. Skogsdata 2017: Aktuella uppgifter om de svenska skogarna från Riksskogstaxeringen. (Sveriges lantbuksuniversitet, Umeå, 2017).

  • 58.

    Hedwall, P. O. & Brunet, J. Trait variations of ground flora species disentangle the effects of global change and altered land-use in Swedish forests during 20 years. Glob. Change Biol. 22, 4038–4047 (2016).

  • 59.

    Hedwall, P. O., Brunet, J., Nordin, A. & Bergh, J. Changes in the abundance of keystone forest floor species in response to changes of forest structure. J. Veg. Sci. 24, 296–306 (2013).

    • Article
    • Google Scholar
  • 60.

    Cook, J. G., Cook, R. C., Davis, R. W. & Irwin, L. L. Nutritional ecology of elk during summer and autumn in the Pacific Northwest. Wildl. Monog. 195, 1–81 (2016).

    • Article
    • Google Scholar
  • 61.

    Herfindal, I., Tremblay, J.-P., Hester, A. J., Lande, U. S. & Wam, H. K. Associational relationships at multiple spatial scales affect forest damage by moose. For. Ecol. Manag. 348, 97–107 (2015).

    • Article
    • Google Scholar
  • 62.

    Puettmann, K. J. et al. Silvicultural alternatives to conventional even-aged forest management-what limits global adoption? For. Ecosyst. 2, 1–16 (2015).

    • Article
    • Google Scholar
  • 63.

    Felton, A. et al. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio 45, 124–139 (2016).

  • 64.

    Felton, A., Ellingson, L., Andersson, E., Drossler, L. & Blennow, K. Adapting production forests in southern Sweden to climate change: constraints and opportunities for risk spreading. Intern. J. Clim. Change Strat. Manag. 2, 84–97 (2010).

    • Article
    • Google Scholar
  • 65.

    SFA. Statistical yearbook of forestry 2014 (in Swedish) Skogsstatistisk årsbok 2014. (Swedish forest agency, 2014).

  • 66.

    Sandström, C. Adaptiv älgförvaltning nr 13: Det organisatoriska ramverket. (Swedish University for Agricultural Sciences, 2011).

  • 67.

    Wolfe, M. L. Age determination in moose from cemental layers of molar teeth. J. Wildl. Manag. 33, 428–431 (1969).

    • Article
    • Google Scholar
  • 68.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Letters 4, 379–391 (2001).

    • Article
    • Google Scholar
  • 69.

    Gardner, T. A. et al. The value of primary, secondary, and plantation forests for a neotropical herpetofauna. Cons. Biol. 21, 775–787 (2007).

    • Article
    • Google Scholar
  • 70.

    Morellet, N., Klein, F., Solberg, E. J. & Andersen, R. The census and management of populations of ungulates in Europe, in Ungulate management in Europe: problems and practices (eds. Putman, R. J., Apollonio, M. & Andersen, R.) 106–143 (Cambridge University Press, 2011).

  • 71.

    Ericsson, G. & Kindberg, J. Adaptiv älgförvaltning nr 2: Älgobservationer (Älgobs) (Swedish university of agricultural sciences, Uppsala, 2011).

  • 72.

    ArcGIS Desktop v. Release 10 (Environmental Systems Research Institute, Redlands, CA, 2011).

  • 73.

    CadasterENVSweden. CadasterENV Sweden – a multicale and multipurpose land cover monitoring system. (Swedish Environmental Protection Agency Stockholm, 2015).

  • 74.

    Swedish Forest Agency. Skogsdataportalen, http://skogsdataportalen.skogsstyrelsen.se/Skogsdataportalen/ (2018).

  • 75.

    Löf, M., Rydberg, D. & Bolte, A. Mounding site preparation for forest restoration: Survival and short term growth response in Quercus robur L. seedlings. For. Ecol. Manag. 232, 19–25 (2006).

    • Article
    • Google Scholar
  • 76.

    RCoreTeam R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2017).

  • 77.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer Science & Business Media, 2009).


  • Source: Ecology - nature.com

    The scientists restoring a gold-mining disaster in the Peruvian Amazon

    Decarbonizing the making of consumer products