in

Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau

  • 1.

    Zhang, Z., Lu, X., Song, X., Guo, Y. & Xue, Z. Soil C, N and P stoichiometry of Deyeuxia angustifolia and Carex lasiocarpa wetlands in Sanjiang Plain Northeast China. J. Soils Sediments 9(12), 1309–1315 (2012).

    Article  CAS  Google Scholar 

  • 2.

    Sardans, J. et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Change Biol. 23(3), 1282–1291 (2017).

    ADS  Article  Google Scholar 

  • 3.

    Aneja, M. et al. Microbial colonization of beech and spruce litter: influence of decomposition site and plant litter species on the diversity of microbial community. Microb. Ecol. 52, 127–135 (2006).

    PubMed  Article  Google Scholar 

  • 4.

    Tilman, D. The resource–ratio hypothesis of plant succession. Am. Nat. 125(6), 827–852 (1985).

    Article  Google Scholar 

  • 5.

    Li, F. et al. Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Appl. Soil Ecol. 64, 1–6 (2013).

    MathSciNet  Article  Google Scholar 

  • 6.

    Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 68, 252–262 (2014).

    CAS  Article  Google Scholar 

  • 7.

    Caldwell, B. A. Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49(6), 637–644 (2005).

    CAS  Article  Google Scholar 

  • 8.

    Wang, B. et al. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area Northwest China. CATENA 92, 186–195 (2012).

    CAS  Article  Google Scholar 

  • 9.

    Singh, D. K. & Kumar, S. Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere 71(3), 412–418 (2008).

    ADS  MathSciNet  CAS  PubMed  Article  Google Scholar 

  • 10.

    Blagodatskaya, E., Blagodatsky, S., Khomyakov, N., Myachina, O. & Kuzyakov, Y. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro. Sci. Rep. 6, 22240 (2016).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Yao, Y., Shao, M., Fu, X., Wang, X. & Wei, X. Effects of shrubs on soil nutrients and enzymatic activities over a 0–100 cm soil profile in the desert-loess transition zone. CATENA 174, 362–370 (2019).

    CAS  Article  Google Scholar 

  • 12.

    Bartkowiak, A. & Lemanowicz, J. Effect of forest fire on changes in the content of total and available forms of selected heavy metals and catalase activity in soil. Soil Sci. Ann. 68(3), 140–148 (2017).

    CAS  Article  Google Scholar 

  • 13.

    Chen, S. K., Edwards, C. A. & Subler, S. The influence of two agricultural biostimulants on nitrogen transformations, microbial activity, and plant growth in soil microcosms. Soil Biol. Biochem. 35(1), 9–19 (2003).

    CAS  Article  Google Scholar 

  • 14.

    Baum, C., Leinweber, P. & Schlichting, A. Effects of chemical conditions in re-wetted peats on temporal variation in microbial biomass and acid phosphatase activity within the growing season. Appl. Soil Ecol. 22(2), 167–174 (2003).

    Article  Google Scholar 

  • 15.

    Štursová, M. & Baldrian, P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 338(1–2), 99–110 (2011).

    Article  CAS  Google Scholar 

  • 16.

    Peng, F., Quangang, Y., Xue, X., Guo, J. & Wang, T. Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai-Tibet Plateau, China. Solid Earth. 6(1) 303–310 (2015).

  • 17.

    Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9(4), 312–318 (2016).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Tietjen, B. et al. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Global Change Biol. 23(7), 2743–2754 (2017).

    ADS  Article  Google Scholar 

  • 19.

    Hao, L. et al. Quantifying the effects of overgrazing on mountainous watershed vegetation dynamics under a changing climate. Sci. Total Environ. 639, 1408–1420 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 20.

    Wen, L. et al. The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant Soil 368(1–2), 329–340 (2013).

    CAS  Article  Google Scholar 

  • 21.

    Zhang, W., Xue, X., Peng, F., You, Q. & Hao, A. Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 20, e00774 (2019).

    Article  Google Scholar 

  • 22.

    Che, R. et al. Increase in ammonia-oxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss. Biogeochemistry 136(3), 341–352 (2017).

    CAS  Article  Google Scholar 

  • 23.

    Zhang, Q. et al. Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment. Appl. Soil Ecol. 94, 59–71 (2015).

    Article  Google Scholar 

  • 24.

    Liu, X. & Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 20, 1729–1742 (2000).

    Article  Google Scholar 

  • 25.

    Wu, P. et al. Impacts of alpine wetland degradation on the composition, diversity and trophic structure of soil nematodes on the Qinghai-Tibetan Plateau. Sci. Rep. 7(1), 837 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Li, B., Dong, S. C., Jiang, X. B. & Li, Z. H. Analysis on the driving factors of grassland desertification in Zoige wetland. J. Soil Water Conserv. 15, 112–115 (2008).

    Google Scholar 

  • 27.

    Zhang, Y. et al. Alpine wetland in the Lhasa River Basin China. J. Geogr Sci. 20(3), 375–388 (2010).

    Article  Google Scholar 

  • 28.

    Wu, J. Q. et al. Vegetation degradation along water gradient leads to soil active organic carbon loss in Gahai wetland. Ecol. Eng. 145, 105666 (2020).

    Article  Google Scholar 

  • 29.

    Liu, L. F. et al. Water table drawdown reshapes soil physicochemical characteristics in Zoige peatlands. CATENA 170, 119–128 (2018).

    CAS  Article  Google Scholar 

  • 30.

    Ma, W. W. et al. Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China. Nutr. Cycl. Agroecosys. 112, 335–354 (2018).

    Article  Google Scholar 

  • 31.

    Yang, Z. et al. The linkage between vegetation and soil nutrients and their variation under different grazing intensities in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Ecol. Eng. 110, 128–136 (2018).

    Article  Google Scholar 

  • 32.

    Alhassan, A. M. et al. Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadowon the Qinghai-Tibet Plateau. Ecol. Evol. 8, 11999–12010 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Li, Z. et al. Dynamics of soil respiration in alpine wetland meadows exposed to different levels of degradation in the Qinghai-Tibet Plateau China. Sci. Rep. 9, 7469 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Bechmann, M. E., Kleinman, P. J., Sharpley, A. N. & Saporito, L. S. Freeze-thaw effects on phosphorus loss in runoff from manured and catch-cropped soils. J. Environ Qual. 34, 2301–2309 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Joseph, G. & Henry, H. A. Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field. Soil Biol. Biochem. 40, 1947–1953 (2008).

    CAS  Article  Google Scholar 

  • 36.

    Ren, J. et al. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh Northeast China. Sci. Total Environ. 625, 782–791 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 37.

    McGill, W. B. & Figueiredo, C. T. Total nitrogen. In Soil Sampling and Methods of Analysis (ed. Carter, M. R.) 201–211 (Canadian Society of Soil Science/Lewis Publishers, Boca Raton, 1993).

    Google Scholar 

  • 38.

    Lu, R. K. Soil and Agricultural Chemistry Analysis Method (China Agriculture Science and Technique Press, Beijing, 2000).

    Google Scholar 

  • 39.

    Guan, Y. S. Soil Enzyme and Research Method 309–313 (Agricultural Press, Beijing, 1986).

    Google Scholar 

  • 40.

    Yin, R., Deng, H., Wang, H. L. & Zhang, B. Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. CATENA 115, 96–103 (2014).

    Article  Google Scholar 

  • 41.

    Ge, G. et al. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant soil. 326(1–2), 31 (2010).

    CAS  Article  Google Scholar 

  • 42.

    Xie, X. et al. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil Eastern China.. Sci. Total Environ. 607, 1419–1427 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 43.

    Cao, J., Ji, D. & Wang, C. Interaction between earthworms and arbuscular mycorrhizal fungi on the degradation of oxytetracycline in soils. Soil Biol. Biochem. 90, 283–292 (2015).

    CAS  Article  Google Scholar 

  • 44.

    Li, Q., Liang, J. H., He, Y. Y., Hu, Q. J. & Yu, S. Effect of land use on soil enzyme activities at karst area in Nanchuan, Chongqing Southwest China. Plant Soil Environ. 60(1), 15–20 (2014).

    CAS  Article  Google Scholar 

  • 45.

    Mitsch, W. J. & Gosselink, J. G. Wetland biogeochemistry. Wetlands. 3, 155–204 (2000).

    Google Scholar 

  • 46.

    Dijkstra, F., Cheng, W. & Johnson, D. Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biol. Biochem. 38, 2519–2526 (2006).

    CAS  Article  Google Scholar 

  • 47.

    Zhang, F., Shen, J., Li, L. & Liu, X. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant Soil 260(1–2), 89–99 (2004).

    CAS  Article  Google Scholar 

  • 48.

    Wang, W. et al. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland. Geoderma 232–234, 459–470 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 49.

    Yan, J. et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319, 194–203 (2018).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Tesfaye, M. A., Bravo, F., Ruiz-Peinado, R., Pando, V. & Bravo-Oviedo, A. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261, 70–79 (2016).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Enriquez, A. S., Chimner, R. A., Cremona, M. V., Diehl, P. & Bonvissuto, G. L. Grazing intensity levels influence C reservoirs of wet and mesic meadows along a precipitation gradient in Northern Patagonia. Wetl. Ecol. Manag. 23, 439–451 (2015).

    CAS  Article  Google Scholar 

  • 52.

    Hassan, A. et al. Depth distribution of soil organic carbon fractions in relation to tillage and cropping sequences in some dry lands of Punjab Pakistan. Land Degrad. Dev. 27, 1175–1185 (2016).

    Article  Google Scholar 

  • 53.

    Li, J. et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China plain. Soil Tillage Res. 175, 281–290 (2018).

    Article  Google Scholar 

  • 54.

    Liu, E. et al. Seasonal changes and vertical distributions of soil organic carbon pools under conventional and no-till practices on Loess Plateau in China. Soil Sci. Soc. Am. J. 79(2), 517–526 (2015).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Wuest, S. Seasonal variation in soil organic carbon. Soil Sci. Soc. Am. J. 78(4), 1442–1447 (2014).

    ADS  Article  CAS  Google Scholar 

  • 56.

    Suyker, A. E. & Verma, S. B. Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Global Change Biol. 7, 279–289 (2001).

    ADS  Article  Google Scholar 

  • 57.

    Tang, S. et al. Decomposition of soil organic carbon influenced by soil temperature and moisture in Andisol and Inceptisol paddy soils in a cold temperate region of Japan. J. Soils Sediments. 17(7), 1843–1851 (2017).

    CAS  Article  Google Scholar 

  • 58.

    Li, Y. et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ. 222, 213–222 (2016).

    Article  Google Scholar 

  • 59.

    Luo, W. et al. Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochem. Cycle 29, 1298–1308 (2015).

    ADS  CAS  Article  Google Scholar 

  • 60.

    Foote, J. A., Boutton, T. W. & Scott, D. A. Soil C and N storage and microbial biomass in US southern pine forests: influence of forest management. For. Ecol. Manag. 355, 48–57 (2015).

    Article  Google Scholar 

  • 61.

    Lost, S., Landgraf, D. & Makeschin, F. Chemical soil properties of reclaimed marsh soil from Zhejiang Province P.R China. Geoderma 142(3–4), 245–250 (2007).

    ADS  Google Scholar 

  • 62.

    Zhang, L. P., Jia, G. M. & Xi, Y. The soil enzyme activities with age of tea in three gorges reservoir area. Adv. Mat. Res. 989, 1292–1296 (2014).

    Google Scholar 

  • 63.

    Manzoni, S., Trofymow, J. A., Jackson, R. B. & Porporato, A. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecol. Monogr. 80(1), 89–106 (2010).

    Article  Google Scholar 

  • 64.

    Chaparro, J. M. et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8(2), 55731 (2013).

    ADS  Article  CAS  Google Scholar 

  • 65.

    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Biol. 57, 233–266 (2006).

    CAS  Article  Google Scholar 

  • 66.

    Hinsinger, P. et al. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 156(3), 1078–1086 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Peng, J., Li, Y., Tian, L., Liu, Y. & Wang, Y. Vegetation dynamics and associated driving forces in Eastern China during 1999–2008. Remote Sens-Basel 7(10), 13641–13663 (2015).

    ADS  Article  Google Scholar 

  • 68.

    Yu, C. et al. Soil nutrient changes induced by the presence and intensity of plateaupika (ochotona curzoniae) disturbances in the qinghai-tibet plateau, china. Ecol. Eng. 106, 1–9 (2017).

    Article  Google Scholar 

  • 69.

    Saggar, S., Parfitt, R. L., Salt, G. & Skinner, M. F. Carbon and phosphorus transformations during decomposition of pine forest floor with different phosphorus status. Biol. Fert. Soils. 27(2), 197–204 (1998).

    CAS  Article  Google Scholar 

  • 70.

    Hanson, P. J., Edwards, N. T., Garten, C. T. & Andrews, J. A. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48(1), 115–146 (2000).

    CAS  Article  Google Scholar 

  • 71.

    De Feudis, M. et al. Effect of beech (Fagus sylvatica L.) rhizosphere on phosphorous availability in soils at different altitudes (Central Italy). Geoderma 276, 53–63 (2016).

    ADS  Article  CAS  Google Scholar 

  • 72.

    Huang, W. & Spohn, M. Effects of long-term litter manipulation on soil carbon, nitrogen, and phosphorus in a temperate deciduous forest. Soil Biol. Biochem. 83, 12–18 (2015).

    CAS  Article  Google Scholar 

  • 73.

    Peng, S. Z., Yang, S. H., Xu, J. Z., Luo, Y. F. & Hou, H. J. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy Water Environ. 9(3), 333–342 (2011).

    Article  Google Scholar 

  • 74.

    Deng, J. et al. Soil C, N, P and its stratification ratio affected by artificial vegetation in subsoil Loess Plateau China. PLoS ONE 11(3), e0151446 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 75.

    Liu, J. et al. Effect of seasonal freeze–thaw cycle on net nitrogen mineralization of soil organic layer in the subalpine/alpine forests of western Sichuan China. Acta Ecol. Sin. 33(1), 32–37 (2013).

    Article  Google Scholar 

  • 76.

    Wang, Y., Wu, Q., Tian, L., Niu, F. & Tan, L. Correlation of alpine vegetation degradation and soil nutrient status of permafrost in the source regions of the Yangtze River China. Environ. Earth Sci. 67(4), 1215–1223 (2012).

    CAS  Article  Google Scholar 

  • 77.

    Bauhus, J. & Khanna, P. K. Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting cycles. Biol. Fert. Soils. 17(3), 212–218 (1994).

    CAS  Article  Google Scholar 

  • 78.

    Mehnaz, K. R., Corneo, P. E., Keitel, C. & Dijkstra, F. A. Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil. Soil Biol. Biochem. 134, 175–186 (2019).

    CAS  Article  Google Scholar 

  • 79.

    Acosta-Martinez, V., Cano, A. & Johnson, J. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indices. Appl. Soil Ecol. 126, 121–128 (2018).

    Article  Google Scholar 

  • 80.

    Poeplau, C., Bolinder, M., Kirchmann, H. & Kätterer, T. Phosphorus fertilisation under nitrogen limitation can deplete soil carbon, stocks: evidence from Swedish meta-replicated long-term field experiments. Biogeosciences 13(4), 1119–1127 (2016).

    ADS  CAS  Article  Google Scholar 

  • 81.

    Xiao, Y., Huang, Z. G. & Lu, X. G. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain Northeast China. Ecol. Eng. 82, 381–389 (2015).

    Article  Google Scholar 

  • 82.

    Vergani, C. & Graf, F. Soil permeability, aggregate stability and root growth: a pot experiment from a soil bioengineering perspective. Ecohydrology. 9(5), 830–842 (2016).

    Article  Google Scholar 

  • 83.

    Wang, X., Yan, B., Fan, B., Shi, L. & Liu, G. Temperature and soil microorganisms interact to affect Dodonaea viscosa, growth on mountainsides. Plant Ecol. 219(7), 759–774 (2018).

  • 84.

    Ross, D. J. A seasonal study of oxygen uptake of some pasture soils and activities of enzymes hydrolysing sucrose and starch. Eur. J. Soil Sci. 16(1), 73–85 (1965).

    CAS  Article  Google Scholar 

  • 85.

    Tierney, G. L. et al. Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochemistry 56(2), 175–190 (2001).

    CAS  Article  Google Scholar 

  • 86.

    Koponen, H. T. et al. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biol. Biochem. 38(7), 1861–1871 (2006).

    CAS  Article  Google Scholar 

  • 87.

    Brzezińska, M., Włodarczyk, T., Stępniewski, W. & Przywara, G. Soil aeration status and catalase activity. Acta Agrophys. 5(3), 555–565 (2005).

    Google Scholar 

  • 88.

    Tegeder, M. & Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 217, 35–53 (2018).

    PubMed  Article  Google Scholar 

  • 89.

    Bremner, J. M. & Mulvaney, R. L. Urease activity in soils. Soil Enzymes, 149–196 (Academic Press, London, 1978).

  • 90.

    Zornoza, R. et al. Assessing air drying and rewetting pretreatment effect on some soil enzyme activities under Mediterranean conditions. Soil Biol. Biochem. 38, 2125–2134 (2006).

    CAS  Article  Google Scholar 

  • 91.

    Fernandez, D. P., Neff, J. C., Belnap, J. & Reynolds, R. L. Soil respiration in the cold desert environment of the Colorado Plateau (USA): abiotic regulators and thresholds. Biogeochemistry 78(3), 247–265 (2006).

    Article  Google Scholar 

  • 92.

    Jing, X. et al. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry 117(1), 39–54 (2014).

    CAS  Article  Google Scholar 

  • 93.

    Schindlbacher, A., Schnecker, J., Takriti, M., Borken, W. & Wanek, W. Microbial physiology and soil CO2 efflux after 9 years of soil warming in atemperate forest-no indications for thermal adaptations. Global Change Biol. 21(11), 4265–4277 (2015).

    ADS  Article  Google Scholar 

  • 94.

    Wallenstein, M. D., Mcmahon, S. K. & Schimel, J. P. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Global Change Biol. 15(7), 1631–1639 (2009).

    ADS  Article  Google Scholar 

  • 95.

    Kivlin, S. N. & Treseder, K. K. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition. Biogeochemistry 117(1), 23–37 (2014).

    CAS  Article  Google Scholar 

  • 96.

    Allison, S. D. & Treseder, K. K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biol. 14(12), 2898–2909 (2008).

    ADS  Article  Google Scholar 

  • 97.

    Brzostek, E. R. & Finzi, A. C. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. J. Geophys. Res. 117(G1) (2012).

  • 98.

    Weintraub, S. R., Wieder, W. R., Cleveland, C. C. & Townsend, A. R. Organic matter inputs shift soil enzyme activity and allocation patterns in a wettropical forest. Biogeochemistry 114(1/3), 313–326 (2013).

    CAS  Article  Google Scholar 

  • 99.

    Wang, B., Liu, G. B., Xue, S. & Zhu, B. Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. Environ. Earth Sci. 62(5), 915–925 (2011).

    ADS  CAS  Article  Google Scholar 

  • 100.

    Yang, L., Li, T., Li, F., Lemcoff, J. H. & Cohen, S. Fertilization regulates soil enzymatic activity and fertility dynamics in a cucumber field. Sci. Hortic. 116(1), 21–26 (2008).

    CAS  Article  Google Scholar 

  • 101.

    Alkorta, I. et al. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health. 18(1), 65–73 (2003).

    PubMed  Article  Google Scholar 

  • 102.

    Burns, R. G. et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 58, 216–227 (2013).

    CAS  Article  Google Scholar 

  • 103.

    Cao, C. et al. Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam. plantations in the Horqin sandy land of Northeast China. Appl. Soil Ecol. 40(1), 0–85 (2008).

    Article  Google Scholar 

  • 104.

    Hao, Y., Chang, Q., Li, L. H. & Wei, X. R. Impacts of landform, land use and soil type on soil chemical properties and enzymatic activities in a Loessial Gully watershed. Soil Res. 52(5), 453 (2014).

    CAS  Article  Google Scholar 

  • 105.

    Qi, R. et al. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 102, 36–45 (2016).

    Article  Google Scholar 

  • 106.

    Zhang, H., Zeng, Q., An, S., Dong, Y. & Darboux, F. Soil carbon fractions and enzyme activities under different vegetation types on the Loess Plateau of China. Solid Earth Discuss. 2016, 1–27. https://doi.org/10.5194/se-2016-137 (2016).


  • Source: Ecology - nature.com

    Resistance to insecticides and synergism by enzyme inhibitors in Aedes albopictus from Punjab, Pakistan

    Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes