in

Vegetation structure determines the spatial variability of soil biodiversity across biomes

  • 1.

    Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science. (80-) 247, 1043–1048 (1990).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Durán, J. et al. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe. Ecology 99, 1184–1193 (2018).

    Article  Google Scholar 

  • 3.

    Zuo, X. A. et al. Spatial pattern and heterogeneity of soil organic carbon and nitrogen in sand dunes related to vegetation change and geomorphic position in Horqin Sandy Land Northern China. Environ. Monit. Assess. 164, 29–42 (2010).

    CAS  Article  Google Scholar 

  • 4.

    Farley, R. A. & Fitter, A. H. Temporal and spatial variation in soil resources in a deciduous woodland. J. Ecol. 87, 688–696 (1999).

    Article  Google Scholar 

  • 5.

    Jackson, R. B. & Caldwell, M. M. The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology 74, 612–614 (1993).

    Article  Google Scholar 

  • 6.

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Delgado-Baquerizo, M. et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett. 20, 1295–1305 (2017).

    Article  Google Scholar 

  • 8.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science (80-). 346, 1256688–1256688 (2014).

    Article  Google Scholar 

  • 9.

    Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    CAS  Article  Google Scholar 

  • 10.

    Delgado-Baquerizo, M. et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytol. 219, 574–587 (2018).

    Article  Google Scholar 

  • 11.

    Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl. Acad. Sci. 116, 6891–6896 (2019).

    CAS  Article  Google Scholar 

  • 12.

    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science (80-) 359, 320–325 (2018).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Franklin, R. B. & Mills, A. L. Importance of spatially structured environmental heterogeneity in controlling microbial community composition at small spatial scales in an agricultural field. Soil Biol. Biochem. 41, 1833–1840 (2009).

    CAS  Article  Google Scholar 

  • 14.

    Day, K. J., Hutchings, M. J. & John, E. A. The effects of spatial pattern of nutrient supply on yield, structure and mortality in plant populations. J. Ecol. 91, 541–553 (2003).

    Article  Google Scholar 

  • 15.

    Maestre, F. T. & Reynolds, J. F. Biomass responses to elevated CO2, soil heterogeneity and diversity: An experimental assessment with grassland assemblages. Oecologia 151, 512–520 (2007).

    ADS  Article  Google Scholar 

  • 16.

    Tsunoda, T., Kachi, N. & Suzuki, J.-I. Interactive effects of soil nutrient heterogeneity and belowground herbivory on the growth of plants with different root foraging traits. Plant Soil 384, 327–334 (2014).

    CAS  Article  Google Scholar 

  • 17.

    Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: An Analysis of Global Change (Elsevier Science, Amsterdam, 2012).

    Google Scholar 

  • 18.

    Ochoa-Hueso, R. et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242–253 (2018).

    CAS  Article  Google Scholar 

  • 19.

    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science (80-). 335, 214–218 (2012).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 21.

    Wardle, D. A., Walker, L. R. & Bardgett, R. D. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science (80-). 305, 509–513 (2004).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Alfaro, F. D., Manzano, M., Marquet, P. A. & Gaxiola, A. Microbial communities in soil chronosequences with distinct parent material: the effect of soil pH and litter quality. J. Ecol. 105, 1709–1722 (2017).

    CAS  Article  Google Scholar 

  • 24.

    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    CAS  Article  Google Scholar 

  • 26.

    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B Biol. Sci. 281, 2 (2014).

    Google Scholar 

  • 27.

    Duarte, C. M. Variance and the description of nature. In Comparative Analyses of Ecosystems 301–318 (Springer, New York, 1991). https://doi.org/10.1007/978-1-4612-3122-6_15.

    Google Scholar 

  • 28.

    Fraterrigo, J. M. & Rusak, J. A. Disturbance-driven changes in the variability of ecological patterns and processes. Ecol. Lett. 11, 756–770 (2008).

    Article  Google Scholar 

  • 29.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    Article  Google Scholar 

  • 30.

    Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (Primer-E Ltd, Plymouth, 2008).

    Google Scholar 

  • 31.

    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511617799.

    Google Scholar 

  • 32.

    Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. (2003).

  • 33.

    Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).

    Article  Google Scholar 

  • 34.

    Deraison, H., Badenhausser, I., Loeuille, N., Scherber, C. & Gross, N. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass. Ecol. Lett. 18, 1346–1355 (2015).

    Article  Google Scholar 

  • 35.

    García-Palacios, P., Shaw, E. A., Wall, D. H. & Hättenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19, 554–563 (2016).

    Article  Google Scholar 

  • 36.

    Le Bagousse-Pinguet, Y. et al. Testing the environmental filtering concept in global drylands. J. Ecol. 105, 1058–1069 (2017).

    Article  Google Scholar 

  • 37.

    Dougill, A. J. & Thomas, A. D. Kalahari sand soils: Spatial heterogeneity, biological soil crusts and land degradation. L. Degrad. Dev. 15, 233–242 (2004).

    Article  Google Scholar 

  • 38.

    Hook, P. B., Burke, I. C. & Lauenroth, W. K. Heterogeneity of soil and plant N and C associated with individual plants and openings in North American shortgrass steppe. Plant Soil 138, 247–256 (1991).

    CAS  Article  Google Scholar 

  • 39.

    D’Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S. & Runyan, C. W. Global desertification: Drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013).

    ADS  Article  Google Scholar 

  • 40.

    Wardle, D. A. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 9, 870–886 (2006).

    Article  Google Scholar 

  • 41.

    Jurena, P. N. & Archer, S. Woody plant establishment and spatial heterogeneity in grasslands. Ecology 84, 907–919 (2003).

    Article  Google Scholar 

  • 42.

    Zhou, Y., Boutton, T. W. & Wu, X. B. Woody plant encroachment amplifies spatial heterogeneity of soil phosphorus to considerable depth. Ecology 99, 136–147 (2018).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT labs win top recognition for sustainable practices in cold storage management

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award