in

Veteran trees are a source of natural enemies

  • 1.

    IPBES. Intergovernmental science-policy platform on biodiversity and ecosystem services. ttps://ipbes.net (2018).

  • 2.

    Kadykalo, A. N. et al. Disentangling ‘ecosystem services’ and ‘nature’s contributions to people’. Ecosyst. People 15(1), 269–287 (2019).

    Article  Google Scholar 

  • 3.

    Díaz, S. et al. Assessing nature’s contributions to people. Science 359(6373), 270–272 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6(1), 8568 (2015).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Wilson, C. & Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol. Econ. 39(3), 449–462 (2001).

    Article  Google Scholar 

  • 6.

    Pimentel, D. et al. Environmental and economic costs of pesticide use. Bioscience 42(10), 750–760 (1992).

    Article  Google Scholar 

  • 7.

    Horrigan, L., Lawrence, R. & Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ Health Perspect 110(5), 445–456 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Popp, J., Pető, K. & Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33(1), 243–255 (2013).

    Article  Google Scholar 

  • 9.

    Barbosa, P. Conservation Biological Control (Academic Press, Cambridge, 1998).

    Google Scholar 

  • 10.

    Greenop, A., Woodcock, B., Wilby, A., Cook, S. & Pywell, R. Functional diversity positively affects prey suppression by invertebrate predators: A meta-analysis. Ecology 99(8), 1771–1782 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Snyder, W. E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control 135, 73–82 (2019).

    Article  Google Scholar 

  • 12.

    Perez-Alvarez, R., Nault, B. A. & Poveda, K. Effectiveness of augmentative biological control depends on landscape context. Sci. Rep. 9(1), 8664 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Hageneder, F. The Heritage of Trees: History, Culture and Symbolism (Floris Books, 2001).

  • 14.

    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).

    Article  Google Scholar 

  • 15.

    Müller, J., Jarzabek-Müller, A., Bussler, H. & Gossner, M. M. Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim. Conserv. 17(2), 154–162 (2013).

    Article  Google Scholar 

  • 16.

    Jim, C. Urban heritage trees: Natural-cultural significance informing management and conservation. In Greening Cities Advances in 21st Century Human Settlements (eds. Tan, P. & Jim, C.) (Springer, Berlin, 2017).

  • 17.

    Hu, L., Li, Z., Liao, W. & Fan, Q. Values of village fengshui forest patches in biodiversity conservation in the Pearl River Delta, China. Biol. Conserv. 144(5), 1553–1559 (2011).

    Article  Google Scholar 

  • 18.

    Skarpaas, O., Blumentrath, S., Evju, M. & Sverdrup-Thygeson, A. Prediction of biodiversity hotspots in the Anthropocene: The case of veteran oaks. Ecol. Evol. 7(19), 7987–7997 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Siitonen, J., Ranius, T. The Importance of Veteran Trees for Saproxylic Insects. In Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (eds. Kirby, K. & Watkins, C.) 140–53 (CAB International, Wallingford, 2015).

  • 20.

    Lindenmayer, D. B. et al. New policies for old trees: Averting a global crisis in a keystone ecological structure. Conserv. Lett. 7(1), 61–69 (2014).

    Article  Google Scholar 

  • 21.

    Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes—A review. J. Appl. Ecol. 48(3), 619–629 (2011).

    Article  Google Scholar 

  • 22.

    Wetherbee, R., Birkemoe, T., Skarpaas, O. & Sverdrup-Thygeson, A. Hollow oaks and beetle functional diversity: Significance of surroundings extends beyond taxonomy. Ecol. Evol. 10(2), 819–831 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Pilskog, H., Birkemoe, T., Framstad, E. & Sverdrup-Thygeson, A. Effect of habitat size, quality, and isolation on functional groups of beetles in hollow oaks. Insect Sci. 16, 1–8 (2016).

    Article  CAS  Google Scholar 

  • 24.

    Lefcheck, J. & Duffy, J. E. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96(11), 2973–2983 (2015).

    PubMed  Article  Google Scholar 

  • 25.

    Heemsbergen, D. A. et al. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306(5698), 1019–1020 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 26.

    Ferrante, M., Lo Cacciato, A. & Lovei, G. L. Quantifying predation pressure along an urbanisation gradient in Denmark using artificial caterpillars. Eur. J. Entomol. 111(5), 649–654 (2014).

    Article  Google Scholar 

  • 27.

    Lovei, G. L. & Ferrante, M. A. Review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 24(4), 528–542 (2017).

    PubMed  Article  Google Scholar 

  • 28.

    Kidd, N. A., Jervis, M. A. Population dynamics in Insects as Natural Enemies (ed. Jervis, M. A.) 435–523 (Springer, 2005).

  • 29.

    Low, P. A., Sam, K., McArthur, C., Posa, M. R. C. & Hochuli, D. F. Determining predator identity from attack marks left in model caterpillars: Guidelines for best practice. Entomol. Exp. Appl. 152(2), 120–126 (2014).

    Article  Google Scholar 

  • 30.

    Howe, A., Lovei, G. & Nachman, G. Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomol. Exp. Appl. 131, 325–329 (2009).

    Article  Google Scholar 

  • 31.

    Sam, K., Remmel, T. & Molleman, F. Material affects attack rates on dummy caterpillars in tropical forest where arthropod predators dominate: An experiment using clay and dough dummies with green colourants on various plant species. Entomol. Exp. Appl. 157(3), 317–324 (2015).

    Article  Google Scholar 

  • 32.

    Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31(3), 558–567 (2017).

    Article  Google Scholar 

  • 33.

    Mico, E. et al. Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Sci. Rep. 10(1), 1520 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Ranius, T. & Jansson, N. The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biol. Conserv. 95(1), 85–94 (2000).

    Article  Google Scholar 

  • 35.

    Parmain, G. & Bouget, C. Large solitary oaks as keystone structures for saproxylic beetles in European agricultural landscapes. Insect Conservation and Diversity 11, 100–115 (2018).

    Article  Google Scholar 

  • 36.

    Ferrante, M., Barone, G., Kiss, M., Bozóné-Borbáth, E. & Lövei, G. L. Ground-level predation on artificial caterpillars indicates no enemy-free time for lepidopteran larvae. Community Ecol. 18(3), 280–286 (2017).

    Article  Google Scholar 

  • 37.

    Lövei, G. L. & Sunderland, K. D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41(1), 231–256 (1996).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Sverdrup-Thygeson, A., Skarpaas, O. & Ødegaard, F. Hollow oaks and beetle conservation: The significance of the surroundings. Biodivers. Conserv. 19(3), 837–852 (2010).

    Article  Google Scholar 

  • 39.

    Sverdrup-Thygeson, A., Skarpaas, O., Blumentrath, S., Birkemoe, T. & Evju, M. Habitat connectivity affects specialist species richness more than generalists in veteran trees. For. Ecol. Manag. 403, 96–102 (2017).

    Article  Google Scholar 

  • 40.

    Gough, L. A., Birkemoe, T. & Sverdrup-Thygeson, A. Reactive forest management can also be proactive for wood-living beetles in hollow oak trees. Biol. Conserv. 180, 75–83 (2014).

    Article  Google Scholar 

  • 41.

    Hagge, J. et al. Congruent patterns of functional diversity in saproxylic beetles and fungi across European beech forests. J. Biogeogr. 46(5), 1054–1065 (2019).

    Article  Google Scholar 

  • 42.

    Tschumi, M., Albrecht, M., Entling, M. H. & Jacot, K. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. R. Soc. B. 282(1814), 20151369 (2015).

    Article  Google Scholar 

  • 43.

    Bowdish, T. I. & Bultman, T. L. Visual cues used by mantids in learning aversion to aposematically colored prey. Am. Midl. Nat. 129(2), 215–222 (1993).

    Article  Google Scholar 

  • 44.

    Kauppinen, J. & Mappes, J. Why are wasps so intimidating: Field experiments on hunting dragonflies (Odonata: Aeshna grandis). Anim. Behav. 66(3), 505–511 (2003).

    Article  Google Scholar 

  • 45.

    Prudic, K. L., Stoehr, A. M., Wasik, B. R. & Monteiro, A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proc. R. Soc. B. 282(1798), 20141531 (2015).

    PubMed  Article  Google Scholar 

  • 46.

    Micó, E. Saproxylic insects in tree hollows. In Saproxylic Insects: Diversity, Ecology and Conservation (ed. Ulyshen, M. D.) 693–727 (Springer, Berlin, 2018).

  • 47.

    Harmon, J. P., Losey, J. E. & Ives, A. R. The role of vision and color in the close proximity foraging behavior of four coccinellid species. Oecologia 115(1), 287–292 (1998).

    ADS  PubMed  Article  Google Scholar 

  • 48.

    Hartel, T., Réti, K. O. & Craioveanu, C. Valuing scattered trees from wood-pastures by farmers in a traditional rural region of Eastern Europe. Agric. Ecosyst. Environ. 236, 304–311 (2017).

    Article  Google Scholar 

  • 49.

    Hougner, C., Colding, J. & Söderqvist, T. Economic valuation of a seed dispersal service in the Stockholm National Urban Park, Sweden. Ecol. Econ. 59(3), 364–374 (2006).

    Article  Google Scholar 

  • 50.

    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 92(3), 1434–1458 (2017).

    PubMed  Article  Google Scholar 

  • 51.

    ARKO. Hule eiker—et hotspot-habitat Sluttrapport under ARKO-prosjektets periode II. https://www.miljodirektoratet.no/globalassets/publikasjoner/dirnat2/attachment/2557/nina-rapport-710_hotspot-hule-eiker_sverdrup-thygeson_2011.pdf. The Norwegian Institute for Nature Research (2011).

  • 52.

    NBIC. Norwegian Biodiversity Information Centre. https://www.biodiversity.no (2018).

  • 53.

    Majekova, M. et al. Evaluating functional diversity: Missing trait data and the importance of species abundance structure and data transformation. PLoS ONE 11(2), 1–17 (2016).

    Article  CAS  Google Scholar 

  • 54.

    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effect Models and Extensions in Ecology with R (Springer, New York, 2009).

    Google Scholar 

  • 56.

    R Development Core Team. R: A language and environment for statistical computing. 3.4.0 ed. (R Foundation for Statistical Computing, Vienna, 2017).

  • 57.

    Cailliez, F. The analytical solution of the additive constant problem. Psychometrika 48(2), 305–308 (1983).

    MathSciNet  MATH  Article  Google Scholar 

  • 58.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).

    Article  Google Scholar 

  • 59.

    Bolker, B. M. Tools for General Maximum Likelihood Estimation. CRAN.R. R package version 1.0.20 (2017).

  • 60.

    Barton, K. MuMIn: Multi-Model Inference. R package version 1421. https://CRAN.R-project.org/package=MuMIn (2018).

  • 61.

    Hardin, J. W. & Hilbe, J. M. Generalized Linear Models and Extensions (Stata Press, College Station, 2007).

    Google Scholar 

  • 62.

    Bolker BM. Linear and generalized linear mixed models. In Ecological Statistics: Contemporary Theory and Application (eds. Fox, G. A., Negrete-Yankelevich, S., Sosa, V. J.) (Oxford University Press, Oxford, 2015).

  • 63.

    Sarkar, D. Lattice:Multivariate Data Visualization with R (Springer, New York, 2008).

    Google Scholar 

  • 64.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).

    Google Scholar 

  • 65.

    Wickham H. François R. Henry L. Müller K. dplyr: A Grammar of Data Manipulation. R package version 078. https://CRAN.R-project.org/package=dplyr (2018).


  • Source: Ecology - nature.com

    The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems

    A sciaenid swim bladder with long skinny fingers produces sound with an unusual frequency spectrum