in

Water warming increases aggression in a tropical fish

  • 1.

    Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387. https://doi.org/10.1111/j.1752-4571.2010.00166.x (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Sih, A. Effects of early stress on behavioral syndromes: an integrated adaptive perspective. Neurosci. Biobehav. Rev. 35, 1452–1465. https://doi.org/10.1016/j.neubiorev.2011.03.015 (2011).

    Article  PubMed  Google Scholar 

  • 3.

    Franks, S. J., Weber, J. J. & Aitken, S. N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7, 123–139. https://doi.org/10.1111/eva.12112 (2014).

    Article  PubMed  Google Scholar 

  • 4.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 (2006).

    Article  Google Scholar 

  • 5.

    Mulholland, P. J. et al. Effects of climate change on freshwater ecosystems of the south-eastern United States and the Gulf Coast of Mexico. Hydrol. Process. 11, 949–970. https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8<949::AID-HYP513>3.0.CO;2-G (1997).

  • 6.

    Justić, D., Rabalais, N. N. & Turner, R. E. Coupling between climate variability and coastal eutrophication: evidence and outlook for the northern Gulf of Mexico. J. Sea Res. 54, 25–35. https://doi.org/10.1016/j.seares.2005.02.008 (2005).

    ADS  Article  Google Scholar 

  • 7.

    Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201. https://doi.org/10.3354/cr00764 (2008).

    Article  Google Scholar 

  • 8.

    Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Am. Assoc. Adv. Sci. 312, 1477–1478 (2006).

    CAS  Google Scholar 

  • 9.

    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17. https://doi.org/10.1093/icb/icj003 (2006).

  • 10.

    Huang, S. L., Hao, Y., Mei, Z., Turvey, S. T. & Wang, D. Common pattern of population decline for freshwater cetacean species in deteriorating habitats. Freshw. Biol. 57, 1266–1276. https://doi.org/10.1111/j.1365-2427.2012.02772.x (2012).

    Article  Google Scholar 

  • 11.

    Matteson, S. W., Mossman, M. J. & Shealer, D. A. Population decline of black terns in Wisconsin: a 30-year perspective. Waterbirds 35, 185–193. https://doi.org/10.1675/063.035.0201 (2012).

    Article  Google Scholar 

  • 12.

    Blaustein, A. R. & Bancroft, B. A. Amphibian population declines: evolutionary considerations. Bioscience 57, 437–444. https://doi.org/10.1641/B570517 (2007).

    Article  Google Scholar 

  • 13.

    Taylor, B. M., Houk, P., Russ, G. R. & Choat, J. H. Life histories predict vulnerability to overexploitation in parrotfishes. Coral Reefs 33, 869–878. https://doi.org/10.1111/j.1752-4571.2010.00166.x0 (2014).

    ADS  Article  Google Scholar 

  • 14.

    Trzcinski, M. K., Mohn, R. & Bowen, W. K. Continued decline of an Atlantic cod population: how important is gray seal predation?. Ecol. Appl. 16, 2276–2292. https://doi.org/10.1111/j.1752-4571.2010.00166.x1 (2006).

    Article  PubMed  Google Scholar 

  • 15.

    Kovach, R. P. et al. Climate, invasive species and land use drive population dynamics of a cold-water specialist. J. Appl. Ecol. 54, 638–647. https://doi.org/10.1111/j.1752-4571.2010.00166.x2 (2017).

    Article  Google Scholar 

  • 16.

    Greenlees, M. J., Phillips, B. L. & Shine, R. An invasive species imposes selection on life-history traits of a native frog. Biol. J. Linn. Soc. 100, 329–336. https://doi.org/10.1111/j.1752-4571.2010.00166.x3 (2010).

    Article  Google Scholar 

  • 17.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. 105, 6668–6672. https://doi.org/10.1111/j.1752-4571.2010.00166.x4 (2008) (arXiv:1408.1149.).

    ADS  Article  PubMed  Google Scholar 

  • 18.

    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. B Biol. Sci. 367, 1665–1679. https://doi.org/10.1111/j.1752-4571.2010.00166.x5 (2012).

    Article  Google Scholar 

  • 19.

    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920. https://doi.org/10.1242/jeb.037473 (2010).

  • 20.

    Hoffman, A. A., Hallas, R. J., Dean, J. A. & Schiffer, M. Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301, 100–102 (2003).

    ADS  Article  Google Scholar 

  • 21.

    Martinez, E., Porreca, A. P., Colombo, R. E. & Menze, M. A. Tradeoffs of warm adaptation in aquatic ectotherms: live fast, die young?. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 191, 209–215. https://doi.org/10.1111/j.1752-4571.2010.00166.x6 (2016).

    CAS  Article  Google Scholar 

  • 22.

    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912. https://doi.org/10.1111/j.1752-4571.2010.00166.x7 (2016).

    Article  Google Scholar 

  • 23.

    Walsh, S. J., Haney, D. C. & Timmerman, C. M. Variation in thermal tolerance and routine metabolism among spring- and stream-dwelling freshwater sculpins (Teleostei: Cottidae) of the southeastern United States. Ecol. Freshw. Fish 6, 84–94. https://doi.org/10.1111/j.1752-4571.2010.00166.x8 (1997).

    Article  Google Scholar 

  • 24.

    Strange, K. T., Vokoun, J. C. & Noltie, D. B. Thermal tolerance and growth differences in orangethroat darter (Etheostoma spectabile) from thermally contrasting adjoining streams. Am. Midl. Nat. 148, 120–128. https://doi.org/10.1111/j.1752-4571.2010.00166.x9 (2002).

    Article  Google Scholar 

  • 25.

    Lemoine, N. P. & Burkepile, D. E. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93, 2483–2489 (2012).

    Article  Google Scholar 

  • 26.

    Rall, B. Ö. C., Vucic-Pestic, O., Ehnes, R. B., EmmersoN, M. & Brose, U. Temperature, predator–prey interaction strength and population stability. Glob. Change Biol. 16, 2145–2157. https://doi.org/10.1016/j.neubiorev.2011.03.0150 (2010).

    ADS  Article  Google Scholar 

  • 27.

    Brodnik, R. M. Impacts of Water Warming on the Physiology and Life-History of a Tropical Freshwater Fish. Master’s thesis, The Ohio State University (2015).

  • 28.

    O’Reilly, C. M., Alin, S. R., Plisnier, P.-D., Cohen, A. S. & McKee, B. A. Climate change decreases aquatic ecosystem productivity of Lake Tanganika. Afr. Nat. 424, 766–768 (2003).

  • 29.

    Stenuite, S. et al. Phytoplankton production and growth rate in Lake Tanganyika: evidence of a decline in primary productivity in recent decades. Freshw. Biol. 52, 2226–2239. https://doi.org/10.1016/j.neubiorev.2011.03.0151 (2007).

    CAS  Article  Google Scholar 

  • 30.

    Verburg, P. & Hecky, R. E. The physics of the warming of Lake Tanganyika by climate change. Limnol. Oceanogr. 54, 2418–2430. https://doi.org/10.1016/j.neubiorev.2011.03.0152 (2009).

    ADS  Article  Google Scholar 

  • 31.

    Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline?. Science 341, 504–508. https://doi.org/10.1016/j.neubiorev.2011.03.0153 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 32.

    Fournier-Level, A. et al. A map of local adaptation in Arabidopsis thaliana. Science 334, 86–89. https://doi.org/10.1016/j.neubiorev.2011.03.0154 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 33.

    Biro, P. A., Beckmann, C. & Stamps, J. A. Small within-day increases in temperature affects boldness and alters personality in coral reef fish. Proc. R. Soc. Biol. 277, 71–77 (2010).

    Article  Google Scholar 

  • 34.

    Kochhann, D., Campos, D. F. & Val, A. L. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 190, 54–60. https://doi.org/10.1016/j.neubiorev.2011.03.0155 (2015).

    CAS  Article  Google Scholar 

  • 35.

    Ratnasabapathi, D., Burns, J. & Souchek, R. Effects of temperature and prior residence on territorial aggression in the convict cichlid Cichlasoma nigrofasciatum. Aggress. Behav. 18, 365–372. https://doi.org/10.1002/1098-2337(1992)18:5<365::AID-AB2480180506>3.0.CO;2-E (1992).

  • 36.

    Careau, V. & Garland, T. Jr. Performance, personality, and energetics: correlation, causation, and mechanism. Physiol. Biochem. Zool. 85, 543–571 (2012).

    Article  Google Scholar 

  • 37.

    Biro, P. A. & Stamps, J. A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?. Trends Ecol. Evol. 25, 653–659. https://doi.org/10.1016/j.neubiorev.2011.03.0156 (2010).

    Article  PubMed  Google Scholar 

  • 38.

    Magurran, A. E. & Seghers, B. H. Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. Behaviour 118, 214–234 (1991).

    Article  Google Scholar 

  • 39.

    Kieffer, J. D., Kubacki, M. R., Phelan, F. J., Philipp, D. P. & Tufts, B. L. The effect of catch-and-release angling on the parental care behavior of male smallmouth bass. Trans. Am. Fish. Soc. 124, 70–76. https://doi.org/10.1577/1548-8659(1995)124<0070 (1995).

  • 40.

    Biro, P. A. & Post, J. R. Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc. Natl. Acad. Sci. 105, 2919–2922. https://doi.org/10.1073/pnas.0708159105 (2008).

    ADS  Article  PubMed  Google Scholar 

  • 41.

    Matthews, S. A. & Wong, M. Y. Temperature-dependent resolution of conflict over rank within a size-based dominance hierarchy. Behav. Ecol. 26, 947–958. https://doi.org/10.1093/beheco/arv042 (2015).

    Article  Google Scholar 

  • 42.

    Brandão, M. L. et al. Water temperature affects aggressive interactions in a Neotropical cichlid fish. Neotrop. Ichthyol. 16, 1–9. https://doi.org/10.1590/1982-0224-20170081 (2018).

    Article  Google Scholar 

  • 43.

    McDonnell, L. H., Reemeyer, J. E. & Chapman, L. J. Independent and interactive effects of long-term exposure to hypoxia and elevated water temperature on behavior and thermal tolerance of an equatorial cichlid. Physiol. Biochem. Zool. 92, 253–265. https://doi.org/10.1086/702712 (2019).

    Article  PubMed  Google Scholar 

  • 44.

    Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).

    Article  Google Scholar 

  • 45.

    Hess, S., Fischer, S. & Taborsky, B. Territorial aggression reduces vigilance but increases aggression towards predators in a cooperatively breeding fish. Anim. Behav. 113, 229–235. https://doi.org/10.1016/j.anbehav.2016.01.008 (2016).

    Article  Google Scholar 

  • 46.

    Sefc, K. M., Mattersdorfer, K., Sturmbauer, C. & Koblmüller, S. High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence. Mol. Ecol. 17, 2531–2543. https://doi.org/10.1111/j.1365-294X.2008.03763.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    White, A. M. & Cameron, E. Z. Fitness consequences of maternal rearing strategies in warthogs: influence of group size and composition. J. Zool. 285, 77–84. https://doi.org/10.1111/j.1469-7998.2011.00816.x (2011).

    Article  Google Scholar 

  • 48.

    Clark, C. W. & Mangel, M. The evolutionary advantages of group foraging. Theor. Popul. Biol. 30, 45–75 (1986).

    MathSciNet  Article  Google Scholar 

  • 49.

    Hass, C. C. & Valenzuela, D. Anti-predator benefits of group living in white-nosed coatis (Nasua narica). Behav. Ecol. Sociobiol. 51, 570–578. https://doi.org/10.1007/s00265-002-0463-5 (2002).

    Article  Google Scholar 

  • 50.

    Schürch, R. & Heg, D. Life history and behavioral type in the highly social cichlid Neolamprologus pulcher. Behav. Ecol. 21, 588–598. https://doi.org/10.1093/beheco/arq024 (2010).

    Article  Google Scholar 

  • 51.

    Cohen, A. S. et al. Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: IX. Summary of paleorecords of environmental change and catchment deforestation at Lake Tanganyika and impacts on the Lake Tanganyika ecosystem. J. Paleolimnol. 34, 125–145. https://doi.org/10.1073/pnas.07081591050 (2005).

    ADS  Article  Google Scholar 

  • 52.

    Kimirei, I. A., Mgaya, Y. D. & Chande, A. I. Changes in species composition and abundance of commercially important pelagic fish species in Kigoma area, Lake Tanganyika, Tanzania. Aquat. Ecosyst. Health Manag. 11, 29–35. https://doi.org/10.1073/pnas.07081591051 (2008).

    Article  Google Scholar 

  • 53.

    Hecky, R. E., Mugidde, R., Ramlal, P. S., Talbot, M. R. & Kling, G. W. Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshw. Biol. 55, 19–42. https://doi.org/10.1073/pnas.07081591052 (2010).

    Article  Google Scholar 

  • 54.

    Richerson, P. J. et al. Anthropogenic stressors and changes in the Clear Lake ecosystem as recorded in sediment cores. Ecol. Appl. 18, A257–A283 (2008).

    Article  Google Scholar 

  • 55.

    Ros, A. F., Becker, K. & Oliveira, R. F. Aggressive behaviour and energy metabolism in a cichlid fish, Oreochromis mossambicus. Physiol. Behav. 89, 164–170. https://doi.org/10.1073/pnas.07081591053 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    Tierney, J. E. et al. Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nat. Geosci. 3, 422–425. https://doi.org/10.1073/pnas.07081591054 (2010).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Van Bocxlaer, B., Schultheiß, R., Plisnier, P. D. & Albrecht, C. Does the decline of gastropods in deep water herald ecosystem change in Lakes Malawi and Tanganyika?. Freshw. Biol. 57, 1733–1744. https://doi.org/10.1073/pnas.07081591055 (2012).

    Article  Google Scholar 

  • 58.

    Verburg, P., Hecky, R. E. & Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–507. https://doi.org/10.1073/pnas.07081591056 (2003).

    ADS  CAS  Article  Google Scholar 

  • 59.

    Nkotagu, H. H. Lake Tanganyika ecosystem management strategies. Aquat. Ecosyst. Health Manag. 11, 36–41. https://doi.org/10.1073/pnas.07081591057 (2008).

    Article  Google Scholar 

  • 60.

    Awata, S., Munehara, H. & Kohda, M. Social system and reproduction of helpers in a cooperatively breeding cichlid fish (Julidochromis ornatus) in Lake Tanganyika: field observations and parentage analyses. Behav. Ecol. Sociobiol. 58, 506–516. https://doi.org/10.1073/pnas.07081591058 (2005).

    Article  Google Scholar 

  • 61.

    Kraemer, B. et al. Century-long temperature record from Lake Tanganyika ver1. https://doi.org/10.6073/pasta/59946ad9f1fefffd541d06054490b104 (2015).

  • 62.

    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19, 357–366. https://doi.org/10.1073/pnas.07081591059 (1979).

    Article  Google Scholar 

  • 63.

    Clarke, A. & Johnston, N. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 905. https://doi.org/10.1093/beheco/arv0420 (1999).

    Article  Google Scholar 

  • 64.

    Grantner, A. & Taborsky, M. The metabolic rates associated with resting, and with the performance of agonistic, submissive and digging behaviours in the cichlid fish Neolamprologus pulcher (Pisces: Cichlidae). J. Comp. Physiol. B Biochem. Syst. Environ. Physiol.168, 427–433. https://doi.org/10.1007/s003600050162 (1998).

  • 65.

    Neat, F. C., Taylor, A. C. & Huntingford, F. A. Proximate costs of fighting in male cichlid fish: the role of injuries and energy metabolism. Anim. Behav. 55, 875–882. https://doi.org/10.1093/beheco/arv0421 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Bissell, K. E. & Cecala, K. K. Increased interspecific aggression between appalachian stream salamanders at elevated temperatures. Freshw. Sci. 38, 834–841. https://doi.org/10.1093/beheco/arv0422 (2019).

    Article  Google Scholar 

  • 67.

    Carlson, B. E. & Rowe, M. P. Temperature and desiccation effects on the antipredator behavior of Centruroides vittatus (Scorpiones: Buthidae). J. Arachnol. 37, 321–330. https://doi.org/10.1093/beheco/arv0423 (2009).

    Article  Google Scholar 

  • 68.

    Careau, V., Thomas, D. K., Humphries, M. M. & Réale, D. Energy metabolism and animal personality. Oikos 117, 641–653. https://doi.org/10.1093/beheco/arv0424 (2008).

    Article  Google Scholar 

  • 69.

    Salzman, T. C., Mclaughlin, A. L., Westneat, D. F. & Crowley, P. H. Energetic trade-offs and feedbacks between behavior and metabolism influence correlations between pace-of-life attributes. Behav. Ecol. Sociobiol. 72, 1–18. https://doi.org/10.1093/beheco/arv0425 (2018).

    Article  Google Scholar 

  • 70.

    Careau, V., Beauchamp, P. P., Bouchard, S. & Morand-Ferron, J. Energy metabolism and personality in wild-caught fall field crickets. Physiol. Behav. 199, 173–181. https://doi.org/10.1093/beheco/arv0426 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 71.

    Ege, R. & Krogh, A. On the relation between the temperature and the respiratory exchange in fishes. Internationale Revue der gesamten Hydrobiologie und Hydrographie 7, 48–55. https://doi.org/10.1093/beheco/arv0427 (1914).

    Article  Google Scholar 

  • 72.

    Johnston, I. A. & Dunn, J. Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish. Society for Experimental Biology 67–93 (1987).

  • 73.

    White, C. R., Phillips, N. F. & Seymour, R. S. The scaling and temperature dependence of vertebrate metabolism. Biol. Lett. 2, 125–127. https://doi.org/10.1093/beheco/arv0428 (2006).

    Article  PubMed  Google Scholar 

  • 74.

    Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18, 573–581. https://doi.org/10.1093/beheco/arv0429 (2003).

    Article  Google Scholar 

  • 75.

    Frappell, P. B. & Daniels, C. B. Temperature effects on ventilation and metabolism in the lizard. Ctenophorus nuchalis. Respir. Physiol. 86, 257–270. https://doi.org/10.1590/1982-0224-201700810 (1991).

    CAS  Article  PubMed  Google Scholar 

  • 76.

    Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature ?. Funct. Ecol. 18, 243–251 (2004).

    Article  Google Scholar 

  • 77.

    White, C. R. et al. Allometric scaling of maximum metabolic rate: the influence of temperature. Funct. Ecol. 22, 616–623. https://doi.org/10.1590/1982-0224-201700811 (2008).

    Article  Google Scholar 

  • 78.

    Clark, T. D., Butler, P. J. & Frappell, P. B. Factors influencing the prediction of metabolic rate in a reptile. Funct. Ecol. 20, 105–113. https://doi.org/10.1590/1982-0224-201700812 (2006) (arXiv:1011.1669v3).

    Article  Google Scholar 

  • 79.

    Iwama, G. K. Stress in fish. Ann. N. Y. Acad. Sci. 851, 304–310. https://doi.org/10.1590/1982-0224-201700813 (1998).

    ADS  Article  Google Scholar 

  • 80.

    Awata, S. & Kohda, M. Parental roles and the amount of care in a bi-parental substrate brooding cichlid: the effect of size differences within pairs. Behaviour 141, 1135–1149. https://doi.org/10.1590/1982-0224-201700814 (2004).

    Article  Google Scholar 

  • 81.

    Heg, D. & Bachar, Z. Cooperative breeding in the Lake Tanganyika cichlid Julidochromis ornatus. Environ. Biol. Fish. 76, 265–281. https://doi.org/10.1590/1982-0224-201700815 (2006).

    Article  Google Scholar 

  • 82.

    Ward, A. J. W., Webster, M. M. & Hart, P. J. B. Intraspecific food competition in fishes. Fish Fish. 7, 231–261. https://doi.org/10.1590/1982-0224-201700816 (2006).

    Article  Google Scholar 

  • 83.

    Herczeg, G., Ghani, N. I. A. & Merilä, J. On plasticity of aggression: influence of past and present predation risk, social environment and sex. Behav. Ecol. Sociobiol. 70, 179–187. https://doi.org/10.1590/1982-0224-201700817 (2016).

    Article  Google Scholar 

  • 84.

    Metcalfe, N. B., Van Leeuwen, T. E. & Killen, S. S. Does individual variation in metabolic phenotype predict fish behaviour and performance?. J. Fish Biol. 88, 298–321. https://doi.org/10.1590/1982-0224-201700818 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 85.

    Rincón, P. A. & Grossman, G. D. Intraspecific aggression in rosyside dace, a drift-feeding stream cyprinid. J. Fish Biol. 59, 968–986. https://doi.org/10.1590/1982-0224-201700819 (2001).

    Article  Google Scholar 

  • 86.

    Mumby, P. J. & Wabnitz, C. C. C. Spatial patterns of aggression, territory size, and harem size in five sympatric Caribbean parrotfish species. Environ. Biol. Fish. 63, 265–279. https://doi.org/10.1086/7027120 (2002).

    Article  Google Scholar 

  • 87.

    Lowney, A., Green, K., Ngomane, B. P. & Thomson, R. L. Mortal combat: intraspecific killing by an African pygmy-falcon (Polihierax semitorquatus) to acquire new mate and territory. J. Raptor Res. 51, 89–91 (2017).

    Article  Google Scholar 

  • 88.

    Deverill, J. I., Adams, C. E. & Bean, C. W. Prior residence, aggression and territory acquisition in hatchery-reared and wild brown trout. J. Fish Biol. 55, 868–875. https://doi.org/10.1086/7027121 (1999).

    Article  Google Scholar 

  • 89.

    Watson, B. Y. A. & Miller, G. R. Territory size and aggression in a fluctuating red grouse population. J. Anim. Ecol. 40, 367–383 (1971).

    Article  Google Scholar 

  • 90.

    Thorpe, J. E., Metcalfe, N. B. & Huntingford, F. A. Behavioural influences on life-history variation in juvenile Atlantic salmon, Salmo salar. Environ. Biol. Fish. 33, 331–340. https://doi.org/10.1086/7027122 (1992).

    Article  Google Scholar 

  • 91.

    Karplus, I., Popper, D. & Goldan, O. The effect of food competition and relative size of group members on growth of juvenile gilthead sea bream, Sparus aurata. Fish Physiol. Biochem. 22, 119–123. https://doi.org/10.1086/7027123 (2000).

    CAS  Article  Google Scholar 

  • 92.

    Lahti, K. & Lower, N. Effects of size asymmetry on aggression and food acquisition in Arctic charr. J. Fish Biol. 56, 915–922. https://doi.org/10.1086/7027124 (2000).

    Article  Google Scholar 

  • 93.

    Tran, M. V., O’Grady, M., Colborn, J., Van Ness, K. & Hill, R. W. Aggression and food resource competition between sympatric hermit crab species. PLoS ONE 9, 1–8. https://doi.org/10.1371/journal.pone.0091823 (2014).

  • 94.

    Rangel, R. E. & Johnson, D. W. Metabolic responses to temperature in a sedentary reef fish, the bluebanded goby (Lythrypnus dalli, Gilbert). J. Exp. Mar. Biol. Ecol. 501, 83–89. https://doi.org/10.1016/j.jembe.2018.01.011 (2018).

    Article  Google Scholar 

  • 95.

    Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991. https://doi.org/10.1038/s41558-018-0314-7 (2018).

    ADS  Article  Google Scholar 

  • 96.

    Grant, J. W. A., Girard, I. L., Breau, C. & Weir, L. K. Influence of food abundance on competitive aggression in juvenile convict cichlids. Anim. Behav. 63, 323–330. https://doi.org/10.1006/anbe.2001.1891 (2002).

    Article  Google Scholar 

  • 97.

    Kim, J. W., Brown, G. E. & Grant, J. W. A. Interactions between patch size and predation risk affect competitive aggression and size variation in juvenile convict cichlids. Anim. Behav. 68, 1181–1187. https://doi.org/10.1016/j.anbehav.2003.11.017 (2004).

    Article  Google Scholar 

  • 98.

    Chuard, P. J. C., Brown, G. E. & Grant, J. W. A. Competition for food in 2 populations of a wild-caught fish. Curr. Zool. 64, 615–622. https://doi.org/10.1093/cz/zox078 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 99.

    Whitehouse, M. E. A. The benefits of stealing from a predator: foraging rates, predation risk, and intraspecific aggression in the kleptoparasitic spider Argyrodes antipodiana. Behav. Ecol. 8, 665–667. https://doi.org/10.1093/beheco/8.6.665 (1997).

    Article  Google Scholar 

  • 100.

    Arnott, G., Beattie, E. & Elwood, R. W. To breathe or fight? Siamese fighting fish differ when facing a real opponent or mirror image. Behav. Process. 129, 11–17. https://doi.org/10.1016/j.beproc.2016.05.005 (2016).

    Article  Google Scholar 

  • 101.

    Balzarini, V., Taborsky, M., Wanner, S., Koch, F. & Frommen, J. G. Mirror, mirror on the wall: the predictive value of mirror tests for measuring aggression in fish. Behav. Ecol. Sociobiol. 68, 871–878. https://doi.org/10.1007/s00265-014-1698-7 (2014).

    Article  Google Scholar 

  • 102.

    Li, C. Y., Curtis, C. & Earley, R. L. Nonreversing mirrors elicit behaviour that more accurately predicts performance against live opponents. Anim. Behav. 137, 95–105. https://doi.org/10.1016/j.anbehav.2018.01.010 (2018).

    Article  Google Scholar 

  • 103.

    Ito, M. H., Yamaguchi, M. & Kutsukake, N. Sex differences in intrasexual aggression among sex-role-reversed, cooperatively breeding cichlid fish Julidochromis regani. J. Ethol. 35, 137–144. https://doi.org/10.1007/s10164-016-0501-9 (2017).

    Article  Google Scholar 

  • 104.

    Donelson, J. M., Munday, P. L., Mccormick, M. I. & Nilsson, G. E. Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob. Change Biol. 17, 1712–1719. https://doi.org/10.1111/j.1365-2486.2010.02339.x (2011).

    ADS  Article  Google Scholar 

  • 105.

    Salinas, S. & Munch, S. B. Thermal legacies: transgenerational effects of temperature on growth in a vertebrate. Ecol. Lett. 15, 159–163. https://doi.org/10.1111/j.1461-0248.2011.01721.x (2012).

    Article  PubMed  Google Scholar 

  • 106.

    Palmer, M. A. et al. Climate change and river ecosystems: protection and adaptation options. Environ. Manag. 44, 1053–1068. https://doi.org/10.1007/s00267-009-9329-1 (2009).

    ADS  Article  Google Scholar 

  • 107.

    Salzburger, W., Meyer, A., Baric, S., Verheyen, E. & Sturmbauer, C. Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the central and east African Haplochromine cichlid fish faunas. Syst. Biol. 51, 113–135 (2002).

    Article  Google Scholar 

  • 108.

    Salzburger, W., Mack, T., Verheyen, E. & Meyer, A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5, 1–15. https://doi.org/10.1186/1471-2148-5-17 (2005).

    Article  Google Scholar 

  • 109.

    Gréboval, D., Bellemans, M. & Fryd, M. Fisheries Characteristics of the Shared Lakes of the East African Rift (Technical report, FAO, Rome, 1994).

  • 110.

    Mölsä, H., Reynolds, J. E., Coenen, E. J. & Lindqvist, O. V. Fisheries research towards resource management on Lake Tanganyika. Hydrobiologia 407, 1–24. https://doi.org/10.1023/A:1003712708969 (1999).

    Article  Google Scholar 

  • 111.

    Awata, S., Kohda, M., Shibata, J. Y., Hori, M. & Heg, D. Group structure, nest size and reproductive success in the cooperatively breeding cichlid Julidochromis ornatus: a correlation study. Ethology 116, 316–328. https://doi.org/10.1111/j.1439-0310.2009.01735.x (2010).

    Article  Google Scholar 

  • 112.

    Hamilton, I. M., Heg, D. & Bender, N. Size differences within a dominance hierarchy influence conflict and help in a cooperatively breeding cichlid. Behaviour 142, 1591–1613 (2005).

    Article  Google Scholar 

  • 113.

    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).

    Article  Google Scholar 

  • 114.

    Wasserstein, R. L. & Lazar, N. A. The ASA’s statement on p -values: context, process, and purpose. Am. Stat. 70, 129–133. https://doi.org/10.1080/00031305.2016.1154108 (2016).

  • 115.

    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).

    MathSciNet  Article  Google Scholar 

  • 116.

    R Core Team. R: A Language and Environment for Statistical Computing (2019).

  • 117.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, Thousand Oaks, 2019).

    Google Scholar 

  • 118.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article  Google Scholar 

  • 119.

    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33. https://doi.org/10.18637/jss.v069.i01 (2016).

    Article  Google Scholar 

  • 120.

    Lenth, R. emmeans: estimated marginal means, aka least-squares means (2019).

  • 121.

    Barton, K. MuMIn: multi-model inference (2019).

  • 122.

    Gross, J. & Ligges, U. nortest: tests for normality (2015).


  • Source: Ecology - nature.com

    Migrant birds and mammals live faster than residents

    Study identifies reasons for soaring nuclear plant cost overruns in the U.S.