Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. T. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 101, 14812–14817 (2004).
Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N. & Hickey, D. A. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 23, 167–172 (2007).
Bucklin, A., Steinke, D. & Blanco-Bercial, L. DNA Barcoding of Marine Metazoa. Ann. Rev. Mar. Sci. 3, 471–508 (2011).
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321 (2003).
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).
Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).
Porter, T. M. & Hajibabaei, M. Over 25 million COI sequences in GenBank and growing. PLoS ONE 13, e0200177 (2018).
Buhay, J. E. “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J. Crustac. Biol. 29, 96–110 (2009).
Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491 (2008).
Smith, M. A. et al. Wolbachia and DNA barcoding insects: Patterns, potential, and problems. PLoS ONE 7, e36514 (2012).
Mioduchowska, M., Czyz, M. J., Gołdyn, B., Kur, J. & Sell, J. Instances of erroneous DNA barcoding of metazoan invertebrates: Are universal cox1 gene primers too “universal”?. PLoS ONE 13, e0199609 (2018).
Parola, P., Paddock, C. D. & Raoult, D. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin. Microbiol. Rev. 18, 719–756 (2005).
Perlman, S. J., Hunter, M. S. & Zchori-Fein, E. The emerging diversity of Rickettsia. Proc. R. Soc. B Biol. Sci. 273, 2097–2106 (2006).
Weinert, L. A. The diversity and phylogeny of Rickettsia. in Parasite diversity and diversification: evolutionary ecology meets phylogenetics (eds. Morand, S., Krasnov, B. R. & Littlewood, D. T. J.) 150–181 (Cambridge University Press, 2015). doi:https://doi.org/10.1017/CBO9781139794749.010.
Weinert, L. A., Werren, J. H., Aebi, A., Stone, G. N. & Jiggins, F. M. Evolution and diversity of Rickettsia bacteria. BMC Biol. 7, 1–15 (2009).
Hajduskova, E. et al. “Candidatus Rickettsia mendelii”, a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic. Ticks Tick. Borne. Dis. 7, 482–486 (2016).
Binetruy, F., Buysse, M., Barosi, R. & Duron, O. Novel Rickettsiagenotypes in ticks in French Guiana. South America. Sci. Rep. 10, 1 (2020).
Kikuchi, Y., Sameshima, S., Kitade, O., Kojima, J. & Fukatsu, T. Novel clade of Rickettsia spp. from leeches. Appl. Environ. Microbiol. 68, 999–1004 (2002).
Kikuchi, Y. & Fukatsu, T. Rickettsia infection in natural leech populations. Microb. Ecol. 49, 265–271 (2005).
Galindo, L. J. et al. Combined cultivation and single-cell approaches to the phylogenomics of nucleariid amoebae, close relatives of fungi. Philos Trans R Soc B Biol Sci 374, 2019 (2019).
Küchler, S. M., Kehl, S. & Dettner, K. Characterization and localization of Rickettsia sp in water beetles of genus Deronectes (Coleoptera: Dytiscidae). FEMS Microbiol. Ecol. 68, 201–211 (2009).
Pilgrim, J. et al. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ. Microbiol. 19, 4238–4255 (2017).
Gollas-Galván, T., Avila-Villa, L. A., Martínez-Porchas, M. & Hernandez-Lopez, J. Rickettsia-like organisms from cultured aquatic organisms, with emphasis on necrotizing hepatopancreatitis bacterium affecting penaeid shrimp: An overview on an emergent concern. Rev. Aquac. 6, 2014 (2014).
Larsson, R. A rickettsial pathogen of the amphipod Rivulogammarus pulex. J. Invertebr. Pathol. 40, 28–35 (1982).
Graf, F. Presence of bacteria in the posterior caecum in the intestinal lumen of the hypogean Crustacean Niphargus virei (Gammaridae: Amphipoda). Can. J. Zool. Can. Zool. 62, 1829–1833 (1984).
Messick, G. A., Overstreet, R. M., Nalepa, T. F. & Tyler, S. Prevalence of parasites in amphipods Diporeia spp from Lakes Michigan and Huron. USA. Dis. Aquat. Organ. 59, 159–170 (2004).
Winters, A. D., Marsh, T. L., Brenden, T. O. & Faisal, M. Analysis of bacterial communities associated with the benthic amphipod Diporeia in the Laurentian great lakes basin. Can. J. Microbiol. 61, 72–81 (2015).
Bojko, J. et al. Parasites, pathogens and commensals in the “low-impact” non-native amphipod host Gammarus roeselii. Paras. Vect. 10, 193 (2017).
Park, E., Jorge, F. & Poulin, R. Shared geographic histories and dispersal contribute to congruent phylogenies between amphipods and their microsporidian parasites at regional and global scales. Mol. Ecol. https://doi.org/10.1111/mec.15562 (2020).
Lagrue, C., Joannes, A., Poulin, R. & Blasco-Costa, I. Genetic structure and host-parasite co-divergence: Evidence for trait-specific local adaptation. Biol. J. Linn. Soc. 118, 344–358 (2016).
Řezáč, M., Gasparo, F., Král, J. & Heneberg, P. Integrative taxonomy and evolutionary history of a newly revealed spider Dysdera ninnii complex (Araneae: Dysderidae). Zool. J. Linn. Soc. 172, 764 (2014).
Ceccarelli, F. S., Haddad, C. R. & Ramírez, M. J. Endosymbiotic Rickettsiales (Alphaproteobacteria) from the spider genus Amaurobioides (Araneae: Anyphaenidae). J. Arachnol. https://doi.org/10.1636/joa-s-15-009 (2016).
Pilgrim, J. et al. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Authorea https://doi.org/10.22541/au.159534851.19125003 (2020).
Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples: a case study on prey DNA in Antarctic krill stomachs. Front. Zool. 5, 12 (2008).
Vestheim, H., Deagle, B. E. & Jarman, S. N. Application of blocking oligonucleotides to improve signal-to-noise ratio in a PCR. Methods Mol. Biol. 687, 265–274 (2011).
Boessenkool, S. et al. Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA. Mol. Ecol. 21, 1806–1815 (2012).
Myers, A. A. Dispersal and endemicity in gammaridean Amphipoda. J. Nat. Hist. 27, 901–908 (1993).
Duron, O. et al. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol. Ecol. 23, 2105–2117 (2014).
López, J. ÁR., Husemann, M., Schmitt, T., Kramp, K. & Habel, J. C. Mountain barriers and trans-Saharan connections shape the genetic structure of Pimelia darkling beetles (Coleoptera: Tenebrionidae). Biol. J. Linn. Soc. https://doi.org/10.1093/biolinnean/bly053 (2018).
Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, 2015 (2015).
Dyková, I., Veverková, M., Fiala, I., Macháčková, B. & Pecková, H. Nuclearia pattersoni sp. n. (Filosea), a new species of amphizoic amoeba isolated from gills of roach (Rutilus rutilus), and its rickettsial endosymbiont. Folia Parasitol. (Praha).50, 161–170 (2003).
Wang, H. L. et al. A newly recorded Rickettsia of the Torix group is a recent intruder and an endosymbiont in the whitefly Bemisia tabaci. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14927 (2020).
Azad, A. F. & Beard, C. B. Rickettsial pathogens and their arthropod vectors. Emerg. Infect. Dis. 4, 179–186 (1998).
Raoult, D. et al. A flea-associated Rickettsia pathogenic for humans. Emerg. Infect. Dis. 7, 73–81 (2001).
Castelli, M., Sassera, D. & Petroni, G. Biodiversity of “non-model” Rickettsiales and their association with aquatic organisms. in Rickettsiales: Biology, Molecular Biology, Epidemiology, and Vaccine Development (ed. Thomas, S.) 59–91 (Springer International Publishing, 2016). doi:https://doi.org/10.1007/978-3-319-46859-4_3.
Sabaneyeva, E. et al. Host and symbiont intraspecific variability: the case of Paramecium calkinsi and “Candidatus Trichorickettsia mobilis”. Eur. J. Protistol. 62, 79–94 (2018).
Schrallhammer, M. et al. “Candidatus Megaira polyxenophila” gen. nov., sp. Nov.: considerations on evolutionary history, host range and shift of early divergent rickettsiae. PLoS ONE 8, 2013 (2013).
MacHtelinckx, T. et al. Microbial community of predatory bugs of the genus Macrolophus (Hemiptera: Miridae). BMC Microbiol. 12, S9 (2012).
Gerth, M. et al. Green lacewings (Neuroptera: Chrysopidae) are commonly associated with a diversity of rickettsial endosymbionts. Zool. Lett. 3, 51 (2017).
Reeves, W. K., Kato, C. Y. & Gilchriest, T. Pathogen screening and bionomics of Lutzomyia apache (Diptera: Psychodidae) in wyoming, USA. J. Am. Mosq. Control Assoc. 24, 444–447 (2008).
Noda, H. et al. Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl. Entomol. Zool. 47, 217–225 (2012).
Goodacre, S. L., Martin, O. Y., Thomas, C. F. G. & Hewitt, G. M. Wolbachia and other endosymbiont infections in spiders. Mol. Ecol. 15, 517–527 (2006).
Gualtieri, L., Nugnes, F., Nappo, A. G., Gebiola, M. & Bernardo, U. Life inside a gall: closeness does not favour horizontal transmission of Rickettsia between a gall wasp and its parasitoid. FEMS Microbiol. Ecol. 93, 2017 (2017).
Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc. R. Soc. B Biol. Sci. 250, 91–98 (1992).
White, J. A., Giorgini, M., Strand, M. R. & Pennacchio, F. Arthropod endosymbiosis and evolution. in Arthropod biology and evolution: molecules, development, morphology (eds. Minelli, A., Boxshall, G. & Fusco, G.) 441–477 (Springer, Berlin, Heidelberg, 2013). doi:https://doi.org/10.1007/978-3-642-36160-9_17.
Minard, G., Mavingui, P. & Moro, C. V. Diversity and function of bacterial microbiota in the mosquito holobiont. Paras. Vect. 6, 146 (2013).
Thompson, J. R., Rivera, H. E., Closek, C. J. & Medina, M. Microbes in the coral holobiont: Partners through evolution, development, and ecological interactions. Front. Cell. Infect. Microbiol. 4, 176 (2014).
Siddall, M. E., Fontanella, F. M., Watson, S. C., Kvist, S. & Erséus, C. Barcoding bamboozled by bacteria: Convergence to metazoan mitochondrial primer targets by marine microbes. Syst. Biol. 58, 445–451 (2009).
Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 1 (2013).
Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, 1177–1192 (2017).
Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 360, 1847–1857 (2005).
Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).
Thongprem, P., Davison, H. R., Thompson, D. J., Lorenzo-Carballa, M. O. & Hurst, G. D. D. Incidence and diversity of torix Rickettsia-odonata symbioses. Microb. Ecol. https://doi.org/10.1007/s00248-020-01568-9 (2020).
Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).
R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2011). doi:https://doi.org/10.1007/978-3-540-74686-7.
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).
Darriba, D., Taboada, G., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 gateway computing environments workshop (GCE) 1–8 (IEEE, 2010). doi:https://doi.org/10.1109/GCE.2010.5676129.
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
Chun, J. Y. et al. Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene. Nucleic Acids Res. 35, e40 (2007).
Source: Ecology - nature.com