in

Widespread Torix Rickettsia in New Zealand amphipods and the use of blocking primers to rescue host COI sequences

  • 1.

    Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. T. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 101, 14812–14817 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N. & Hickey, D. A. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 23, 167–172 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Bucklin, A., Steinke, D. & Blanco-Bercial, L. DNA Barcoding of Marine Metazoa. Ann. Rev. Mar. Sci. 3, 471–508 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321 (2003).

    CAS  Article  Google Scholar 

  • 6.

    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 8.

    Porter, T. M. & Hajibabaei, M. Over 25 million COI sequences in GenBank and growing. PLoS ONE 13, e0200177 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Buhay, J. E. “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J. Crustac. Biol. 29, 96–110 (2009).

    Article  Google Scholar 

  • 10.

    Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Smith, M. A. et al. Wolbachia and DNA barcoding insects: Patterns, potential, and problems. PLoS ONE 7, e36514 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Mioduchowska, M., Czyz, M. J., Gołdyn, B., Kur, J. & Sell, J. Instances of erroneous DNA barcoding of metazoan invertebrates: Are universal cox1 gene primers too “universal”?. PLoS ONE 13, e0199609 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Parola, P., Paddock, C. D. & Raoult, D. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin. Microbiol. Rev. 18, 719–756 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Perlman, S. J., Hunter, M. S. & Zchori-Fein, E. The emerging diversity of Rickettsia. Proc. R. Soc. B Biol. Sci. 273, 2097–2106 (2006).

    Article  Google Scholar 

  • 15.

    Weinert, L. A. The diversity and phylogeny of Rickettsia. in Parasite diversity and diversification: evolutionary ecology meets phylogenetics (eds. Morand, S., Krasnov, B. R. & Littlewood, D. T. J.) 150–181 (Cambridge University Press, 2015). doi:https://doi.org/10.1017/CBO9781139794749.010.

  • 16.

    Weinert, L. A., Werren, J. H., Aebi, A., Stone, G. N. & Jiggins, F. M. Evolution and diversity of Rickettsia bacteria. BMC Biol. 7, 1–15 (2009).

    Article  CAS  Google Scholar 

  • 17.

    Hajduskova, E. et al.Candidatus Rickettsia mendelii”, a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic. Ticks Tick. Borne. Dis. 7, 482–486 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Binetruy, F., Buysse, M., Barosi, R. & Duron, O. Novel Rickettsiagenotypes in ticks in French Guiana. South America. Sci. Rep. 10, 1 (2020).

    Google Scholar 

  • 19.

    Kikuchi, Y., Sameshima, S., Kitade, O., Kojima, J. & Fukatsu, T. Novel clade of Rickettsia spp. from leeches. Appl. Environ. Microbiol. 68, 999–1004 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Kikuchi, Y. & Fukatsu, T. Rickettsia infection in natural leech populations. Microb. Ecol. 49, 265–271 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Galindo, L. J. et al. Combined cultivation and single-cell approaches to the phylogenomics of nucleariid amoebae, close relatives of fungi. Philos Trans R Soc B Biol Sci 374, 2019 (2019).

    Article  CAS  Google Scholar 

  • 22.

    Küchler, S. M., Kehl, S. & Dettner, K. Characterization and localization of Rickettsia sp in water beetles of genus Deronectes (Coleoptera: Dytiscidae). FEMS Microbiol. Ecol. 68, 201–211 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 23.

    Pilgrim, J. et al. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ. Microbiol. 19, 4238–4255 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Gollas-Galván, T., Avila-Villa, L. A., Martínez-Porchas, M. & Hernandez-Lopez, J. Rickettsia-like organisms from cultured aquatic organisms, with emphasis on necrotizing hepatopancreatitis bacterium affecting penaeid shrimp: An overview on an emergent concern. Rev. Aquac. 6, 2014 (2014).

    Article  Google Scholar 

  • 25.

    Larsson, R. A rickettsial pathogen of the amphipod Rivulogammarus pulex. J. Invertebr. Pathol. 40, 28–35 (1982).

    Article  Google Scholar 

  • 26.

    Graf, F. Presence of bacteria in the posterior caecum in the intestinal lumen of the hypogean Crustacean Niphargus virei (Gammaridae: Amphipoda). Can. J. Zool. Can. Zool. 62, 1829–1833 (1984).

    Article  Google Scholar 

  • 27.

    Messick, G. A., Overstreet, R. M., Nalepa, T. F. & Tyler, S. Prevalence of parasites in amphipods Diporeia spp from Lakes Michigan and Huron. USA. Dis. Aquat. Organ. 59, 159–170 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Winters, A. D., Marsh, T. L., Brenden, T. O. & Faisal, M. Analysis of bacterial communities associated with the benthic amphipod Diporeia in the Laurentian great lakes basin. Can. J. Microbiol. 61, 72–81 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Bojko, J. et al. Parasites, pathogens and commensals in the “low-impact” non-native amphipod host Gammarus roeselii. Paras. Vect. 10, 193 (2017).

    Article  Google Scholar 

  • 30.

    Park, E., Jorge, F. & Poulin, R. Shared geographic histories and dispersal contribute to congruent phylogenies between amphipods and their microsporidian parasites at regional and global scales. Mol. Ecol. https://doi.org/10.1111/mec.15562 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Lagrue, C., Joannes, A., Poulin, R. & Blasco-Costa, I. Genetic structure and host-parasite co-divergence: Evidence for trait-specific local adaptation. Biol. J. Linn. Soc. 118, 344–358 (2016).

    Article  Google Scholar 

  • 32.

    Řezáč, M., Gasparo, F., Král, J. & Heneberg, P. Integrative taxonomy and evolutionary history of a newly revealed spider Dysdera ninnii complex (Araneae: Dysderidae). Zool. J. Linn. Soc. 172, 764 (2014).

    Article  Google Scholar 

  • 33.

    Ceccarelli, F. S., Haddad, C. R. & Ramírez, M. J. Endosymbiotic Rickettsiales (Alphaproteobacteria) from the spider genus Amaurobioides (Araneae: Anyphaenidae). J. Arachnol. https://doi.org/10.1636/joa-s-15-009 (2016).

    Article  Google Scholar 

  • 34.

    Pilgrim, J. et al. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Authorea https://doi.org/10.22541/au.159534851.19125003 (2020).

    Article  Google Scholar 

  • 35.

    Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples: a case study on prey DNA in Antarctic krill stomachs. Front. Zool. 5, 12 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Vestheim, H., Deagle, B. E. & Jarman, S. N. Application of blocking oligonucleotides to improve signal-to-noise ratio in a PCR. Methods Mol. Biol. 687, 265–274 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Boessenkool, S. et al. Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA. Mol. Ecol. 21, 1806–1815 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Myers, A. A. Dispersal and endemicity in gammaridean Amphipoda. J. Nat. Hist. 27, 901–908 (1993).

    Article  Google Scholar 

  • 39.

    Duron, O. et al. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol. Ecol. 23, 2105–2117 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    López, J. ÁR., Husemann, M., Schmitt, T., Kramp, K. & Habel, J. C. Mountain barriers and trans-Saharan connections shape the genetic structure of Pimelia darkling beetles (Coleoptera: Tenebrionidae). Biol. J. Linn. Soc. https://doi.org/10.1093/biolinnean/bly053 (2018).

    Article  Google Scholar 

  • 41.

    Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, 2015 (2015).

    Article  CAS  Google Scholar 

  • 42.

    Dyková, I., Veverková, M., Fiala, I., Macháčková, B. & Pecková, H. Nuclearia pattersoni sp. n. (Filosea), a new species of amphizoic amoeba isolated from gills of roach (Rutilus rutilus), and its rickettsial endosymbiont. Folia Parasitol. (Praha).50, 161–170 (2003).

  • 43.

    Wang, H. L. et al. A newly recorded Rickettsia of the Torix group is a recent intruder and an endosymbiont in the whitefly Bemisia tabaci. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14927 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Azad, A. F. & Beard, C. B. Rickettsial pathogens and their arthropod vectors. Emerg. Infect. Dis. 4, 179–186 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Raoult, D. et al. A flea-associated Rickettsia pathogenic for humans. Emerg. Infect. Dis. 7, 73–81 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Castelli, M., Sassera, D. & Petroni, G. Biodiversity of “non-model” Rickettsiales and their association with aquatic organisms. in Rickettsiales: Biology, Molecular Biology, Epidemiology, and Vaccine Development (ed. Thomas, S.) 59–91 (Springer International Publishing, 2016). doi:https://doi.org/10.1007/978-3-319-46859-4_3.

  • 47.

    Sabaneyeva, E. et al. Host and symbiont intraspecific variability: the case of Paramecium calkinsi and “Candidatus Trichorickettsia mobilis”. Eur. J. Protistol. 62, 79–94 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Schrallhammer, M. et al. “Candidatus Megaira polyxenophila” gen. nov., sp. Nov.: considerations on evolutionary history, host range and shift of early divergent rickettsiae. PLoS ONE 8, 2013 (2013).

    Article  CAS  Google Scholar 

  • 49.

    MacHtelinckx, T. et al. Microbial community of predatory bugs of the genus Macrolophus (Hemiptera: Miridae). BMC Microbiol. 12, S9 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Gerth, M. et al. Green lacewings (Neuroptera: Chrysopidae) are commonly associated with a diversity of rickettsial endosymbionts. Zool. Lett. 3, 51 (2017).

    Article  Google Scholar 

  • 51.

    Reeves, W. K., Kato, C. Y. & Gilchriest, T. Pathogen screening and bionomics of Lutzomyia apache (Diptera: Psychodidae) in wyoming, USA. J. Am. Mosq. Control Assoc. 24, 444–447 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Noda, H. et al. Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl. Entomol. Zool. 47, 217–225 (2012).

    CAS  Article  Google Scholar 

  • 53.

    Goodacre, S. L., Martin, O. Y., Thomas, C. F. G. & Hewitt, G. M. Wolbachia and other endosymbiont infections in spiders. Mol. Ecol. 15, 517–527 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Gualtieri, L., Nugnes, F., Nappo, A. G., Gebiola, M. & Bernardo, U. Life inside a gall: closeness does not favour horizontal transmission of Rickettsia between a gall wasp and its parasitoid. FEMS Microbiol. Ecol. 93, 2017 (2017).

    Article  CAS  Google Scholar 

  • 55.

    Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc. R. Soc. B Biol. Sci. 250, 91–98 (1992).

    ADS  CAS  Article  Google Scholar 

  • 56.

    White, J. A., Giorgini, M., Strand, M. R. & Pennacchio, F. Arthropod endosymbiosis and evolution. in Arthropod biology and evolution: molecules, development, morphology (eds. Minelli, A., Boxshall, G. & Fusco, G.) 441–477 (Springer, Berlin, Heidelberg, 2013). doi:https://doi.org/10.1007/978-3-642-36160-9_17.

  • 57.

    Minard, G., Mavingui, P. & Moro, C. V. Diversity and function of bacterial microbiota in the mosquito holobiont. Paras. Vect. 6, 146 (2013).

    Article  Google Scholar 

  • 58.

    Thompson, J. R., Rivera, H. E., Closek, C. J. & Medina, M. Microbes in the coral holobiont: Partners through evolution, development, and ecological interactions. Front. Cell. Infect. Microbiol. 4, 176 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Siddall, M. E., Fontanella, F. M., Watson, S. C., Kvist, S. & Erséus, C. Barcoding bamboozled by bacteria: Convergence to metazoan mitochondrial primer targets by marine microbes. Syst. Biol. 58, 445–451 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 1 (2013).

    Article  CAS  Google Scholar 

  • 61.

    Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, 1177–1192 (2017).

    Article  CAS  Google Scholar 

  • 62.

    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 360, 1847–1857 (2005).

    CAS  Article  Google Scholar 

  • 63.

    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Thongprem, P., Davison, H. R., Thompson, D. J., Lorenzo-Carballa, M. O. & Hurst, G. D. D. Incidence and diversity of torix Rickettsia-odonata symbioses. Microb. Ecol. https://doi.org/10.1007/s00248-020-01568-9 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2011). doi:https://doi.org/10.1007/978-3-540-74686-7.

  • 67.

    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Darriba, D., Taboada, G., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 gateway computing environments workshop (GCE) 1–8 (IEEE, 2010). doi:https://doi.org/10.1109/GCE.2010.5676129.

  • 70.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Chun, J. Y. et al. Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene. Nucleic Acids Res. 35, e40 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Undergraduates ramp up research during pandemic diaspora

    Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization