in

Wild black bears harbor simple gut microbial communities with little difference between the jejunum and colon

  • 1.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484–1241484 (2014).

    PubMed  Article  CAS  Google Scholar 

  • 2.

    Loucks, C. J. et al. Giant Pandas in a Changing Landscape (American Association for the Advancement of Science, Washington, 2001).

    Google Scholar 

  • 3.

    Derocher, A. E. et al. Rapid ecosystem change and polar bear conservation. Conserv. Lett. 6, 368–375 (2013).

    Google Scholar 

  • 4.

    Liu, F. et al. Human–wildlife conflicts influence attitudes but not necessarily behaviors: factors driving the poaching of bears in China. Biol. Conserv. 144, 538–547 (2011).

    Article  Google Scholar 

  • 5.

    McKenney, E. A., Koelle, K., Dunn, R. R. & Yoder, A. D. The ecosystem services of animal microbiomes. Mol. Ecol. 27, 2164–2172 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Hill, M. J. Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 6, S43–S45 (1997).

    Article  Google Scholar 

  • 8.

    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336(6086), 1268–1273 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    Hauffe, H. C. & Barelli, C. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20, 19–27 (2019).

    Article  Google Scholar 

  • 11.

    Dominianni, C. et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE 10, e0124599 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 12.

    McKenney, E. A., Rodrigo, A. & Yoder, A. D. Patterns of gut bacterial colonization in three primate species. PLoS ONE 10, e0124618 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography: microbiome analysis among bats. Mol. Ecol. 21, 2617–2627 (2012).

    PubMed  Article  Google Scholar 

  • 15.

    Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nat. Lond. 444, 1027–1031 (2006).

    ADS  Article  Google Scholar 

  • 17.

    Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Cheng, Y. et al. The Tasmanian devil microbiome: implications for conservation and management. Microbiome 3, 76 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Borgström, B., Dahlqvist, A., Lundh, G. & Sjövall, J. Studies of intestinal digestion and absorption in the human1. J. Clin. Invest. 36, 1521–1536 (1957).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Thomson, A. B. R. et al. Normal physiology, part 1. Dig. Dis. Sci. 48, 19 (2003).

    Google Scholar 

  • 22.

    Amato, K. R. Co-evolution in context: the importance of studying gut microbiomes in wild animals. Microbiome Sci. Med. 1, 10–29 (2013).

    Article  Google Scholar 

  • 23.

    Stevens, C. E. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive System (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  • 24.

    Lafferty, D. J. R., Belant, J. L. & Phillips, D. L. Testing the niche variation hypothesis with a measure of body condition. Oikos 124, 732–740 (2015).

    Article  Google Scholar 

  • 25.

    Baruch-Mordo, S. et al. Stochasticity in natural forage production affects use of urban areas by black bears: implications to management of human-bear conflicts. PLoS ONE 9, e85122 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Ayres, L. A., Chow, L. S. & Graber, D. M. Black bear activity patterns and human induced modifications in sequoia national park. Bears Biol. Manag. 6, 151–154 (1986).

    Google Scholar 

  • 27.

    Enders, M. S. & Vander Wall, S. B. Black bears Ursus americanus are effective seed dispersers, with a little help from their friends. Oikos 121, 589–596 (2012).

    Article  Google Scholar 

  • 28.

    Pritchard, G. T. & Robbins, C. T. Digestive and metabolic efficiencies of grizzly and black bears. Can. J. Zool. 68, 1645–1651 (1990).

    Article  Google Scholar 

  • 29.

    Nelson, R. A. et al. Behavior, biochemistry, and hibernation in black, grizzly, and polar bears. Bears Biol. Manag. 5, 284–290 (1983).

    Google Scholar 

  • 30.

    Brody, A. J. & Pelton, M. R. Seasonal changes in digestion in black bears. Can. J. Zool. 66, 1482–1484 (1988).

    Article  Google Scholar 

  • 31.

    Hellgren, E. C. Ecology and Physiology of a Black Bear (Ursus americanus) Population in the Great Dismal Swamp and Reproduction Physiology in the Captive Female Black Bear (Virginia Polytechnic Institute and State University, Blacksburg, 1988).

    Google Scholar 

  • 32.

    Fowler, N. L., Belant, J. L., Wang, G. & Leopold, B. D. Ecological plasticity of denning chronology by American black bears and brown bears. Glob. Ecol. Conserv. 20, e00750 (2019).

    Article  Google Scholar 

  • 33.

    Samson, C. & Huot, J. Reproductive biology of female black bears in relation to body mass in early winter. J. Mammal. 76, 68–77 (1995).

    Article  Google Scholar 

  • 34.

    Garshelis, D. L., Scheick, B. K., Doan-Crider, D. L., Beecham, J. J. & Obbard, M. E. Ursus americanus. The IUCN Red List of Threatened Species 2016: e.T41687A114251609 (2016).

  • 35.

    Sundin, O. H. et al. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon. BMC Microbiol. 17, 160 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Hayashi, H. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. Microbiol. 54, 1093–1101 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Xiao, Y. et al. Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs. Sci. Rep. 8, 1–10 (2018).

    Article  CAS  Google Scholar 

  • 38.

    Xue, Z. et al. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. MBio 6, e00022-e115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Rojas, C. A., Holekamp, K. E., Winters, A. D. & Theis, K. R. Body-site specific microbiota reflect sex and age-class among wild spotted hyenas. FEMS Microbiol. Ecol. 96(2), fiaa007 (2020).

    PubMed  Article  Google Scholar 

  • 40.

    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Schwab, C. & Gänzle, M. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears. Can. J. Microbiol. 57, 177–185 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Zhu, L., Wu, Q., Dai, J., Zhang, S. & Wei, F. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. 108, 17714–17719 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 43.

    Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: insights into health surveillance. Front. Microbiol. 8, 13–16 (2017).

    Article  Google Scholar 

  • 44.

    Song, C. et al. Comparative analysis of the gut microbiota of black bears in China using high-throughput sequencing. Mol. Genet. Genomics 292, 407–414 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    McKenney, E. A., Maslanka, M., Rodrigo, A. & Yoder, A. D. Bamboo specialists from two mammalian orders (primates, carnivora) share a high number of low-abundance gut microbes. Microb. Ecol. 76, 272–284 (2018).

    PubMed  Article  Google Scholar 

  • 46.

    Bollinger, R. R., Barbas, A. S., Bush, E. L., Lin, S. S. & Parker, W. Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. J. Theor. Biol. 249, 826–831 (2007).

    CAS  Article  Google Scholar 

  • 47.

    Smith, H. F. et al. Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix. J. Evol. Biol. 22, 1984–1999 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Sanders, N. L., Bollinger, R. R., Lee, R., Thomas, S. & Parker, W. Appendectomy and clostridium difficile colitis: relationships revealed by clinical observations and immunology. World J. Gastroenterol. WJG 19, 5607–5614 (2013).

    PubMed  Article  Google Scholar 

  • 49.

    Merchant, R. et al. Association between appendectomy and clostridium difficile infection. J. Clin. Med. Res. 4, 17–19 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Greene, L. K. & McKenney, E. A. The inside tract: the appendicular, cecal, and colonic microbiome of captive aye-ayes. Am. J. Phys. Anthropol. 166, 960–967 (2018).

    PubMed  Article  Google Scholar 

  • 51.

    Tilg, H. & Kaser, A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest. 121, 2126–2132 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).

    PubMed  Article  Google Scholar 

  • 53.

    Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Scher, J. U. et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 67, 128–139 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Dietz, R. et al. Ursidibacter maritimus gen. nov., sp. nov. and Ursidibacter arcticus sp. nov., two new members of the family Pasteurellaceae isolated from the oral cavity of bears. Int. J. Syst. Evol. Microbiol. 65, 3683–3689 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 56.

    Christensen, H. & Bisgaard, M. Taxonomy and biodiversity of members of Pasteurellaceae. In Pasteurellaceae: Biology, Genomics and Molecular Aspects (eds Kuhnert, P. & Christensen, H.) 1–26 (Caister Academic Press, Norfolk, 2008).

    Google Scholar 

  • 57.

    Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Yasuda, K. et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17, 385–391 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Carthey, A. J. R., Blumstein, D. T., Gallagher, R. V., Tetu, S. G. & Gillings, M. R. Conserving the holobiont. Funct. Ecol. https://doi.org/10.1111/1365-2435.13504 (2020).

    Article  Google Scholar 

  • 60.

    Cappa, F., Laut, J., Nov, O., Giustiniano, L. & Porfiri, M. Activating social strategies: face-to-face interaction in technology-mediated citizen science. J. Environ. Manag. 182, 374–384 (2016).

    Article  Google Scholar 

  • 61.

    Budde, M. et al. Participatory sensing or participatory nonsense? Mitigating the effect of human error on data quality in citizen science. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 1–23 (2017).

    Article  Google Scholar 

  • 62.

    McKenney, E. A., Greene, L. K., Drea, C. M. & Yoder, A. D. Down for the count: cryptosporidium infection depletes the gut microbiome in Coquerel’s sifakas. Microb. Ecol. Health Dis. 28, 1335165 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0209-9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 67.

    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

    Google Scholar 

  • 70.

    Allaire, J. RStudio: Integrated Development Environment for R 770 (RStudio, Boston, 2012).

    Google Scholar 

  • 71.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 72.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet  PubMed  MATH  Article  Google Scholar 

  • 73.

    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population

    Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation