in

Winter temperatures predominate in spring phenological responses to warming

[adace-ad id="91168"]
  • 1.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  • 2.

    Miller-Rushing, A. J. & Primack, R. B. Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89, 332—341 (2008).

    Article  Google Scholar 

  • 3.

    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).

    Article  Google Scholar 

  • 4.

    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).

    Article  Google Scholar 

  • 5.

    Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).

    CAS  Article  Google Scholar 

  • 6.

    Rutishauser, T., Luterbacher, J., Defila, C., Frank, D. & Wanner, H. Swiss spring plant phenology 2007: extremes, a multi-century perspective, and changes in temperature sensitivity. Geophys. Res. Lett. 35, L05703 (2008).

    Article  Google Scholar 

  • 7.

    Yu, H. Y., Luedeling, E. & Xu, J. C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).

    CAS  Article  Google Scholar 

  • 8.

    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).

    Article  CAS  Google Scholar 

  • 9.

    Fu, Y. S. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    CAS  Article  Google Scholar 

  • 10.

    Chuine, I. et al. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break. Glob. Change Biol. 22, 3444–3460 (2016).

    Article  Google Scholar 

  • 11.

    Harrington, C. A. & Gould, P. J. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species. Front. Plant Sci. 6, 120 (2015).

    Article  Google Scholar 

  • 12.

    Zohner, C. M., Benito, B. M., Svenning, J. C. & Renner, S. S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Change 6, 1120–1123 (2016).

    Article  Google Scholar 

  • 13.

    Basler, D. & Körner, C. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. Tree Physiol. 34, 377–388 (2014).

    Article  Google Scholar 

  • 14.

    Caffarra, A., Donnelly, A., Chuine, I. & Jones, M. B. Modelling the timing of Betula pubescens bud-burst. I. Temperature and photoperiod: a conceptual model. Clim. Res. 46, 147–157 (2011).

    Article  Google Scholar 

  • 15.

    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).

    CAS  Article  Google Scholar 

  • 16.

    Caffarra, A., Donnelly, A. & Chuine, I. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim. Res. 46, 159–170 (2011).

    Article  Google Scholar 

  • 17.

    Fraga, H., Pinto, J. G. & Santos, J. A. Climate Change projections for chilling and heat forcing conditions in European vineyards and olive orchards: a multi-model assessment. Climatic Change 152, 179–193 (2019).

    Article  Google Scholar 

  • 18.

    Heide, O. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol. Plant. 88, 531–540 (1993).

    CAS  Article  Google Scholar 

  • 19.

    Singh, R. K., Svystun, T., AlDahmash, B., Jönsson, A. M. & Bhalerao, R. P. Photoperiod- and temperature-mediated control of phenology in trees—a molecular perspective. New Phytol. 213, 511–524 (2017).

    CAS  Article  Google Scholar 

  • 20.

    Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8 (2013).

    Article  Google Scholar 

  • 21.

    Vitasse, Y. & Basler, D. Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments? Tree Physiol. 34, 174–183 (2014).

    Article  Google Scholar 

  • 22.

    Laube, J. et al. Chilling outweighs photoperiod in preventing precocious spring development. Glob. Change Biol. 20, 170–182 (2014).

    Article  Google Scholar 

  • 23.

    Basler, D. & Körner, C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric. For. Meteorol. 165, 73–81 (2012).

    Article  Google Scholar 

  • 24.

    Caffarra, A. & Donnelly, A. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int. J. Biometeorol. 55, 711–721 (2011).

    Article  Google Scholar 

  • 25.

    Ohlemüller, R., Gritti, E. S., Sykes, M. T. & Thomas, C. D. Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931–2100. Glob. Ecol. Biogeogr. 15, 395–405 (2006).

    Article  Google Scholar 

  • 26.

    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article  Google Scholar 

  • 27.

    Williams, J. W., Jackson, S. T. & Kutzbacht, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).

    CAS  Article  Google Scholar 

  • 28.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 29.

    Xu, Y., Ramanathan, V. & Victor, D. G. Global warming will happen faster than we think. Nature 564, 30–32 (2018).

  • 30.

    Wolkovich, E. M. et al. Observed Spring Phenology Responses in Experimental Environments (OSPREE) (Knowledge Network for Biocomplexity, 2019); https://doi.org/10.5063/F1CZ35KB

  • 31.

    Richardson, E. A model for estimating the completion of rest for ‘Redhaven’ and ’Elberta’ peach trees. HortScience 9, 331–332 (1974).

    Google Scholar 

  • 32.

    Dennis, F. Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience 38, 347–350 (2003).

    Article  Google Scholar 

  • 33.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2006).

  • 34.

    Fu, Y. H. et al. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Glob. Change Biol. 25, 1696–1703 (2019).

    Article  Google Scholar 

  • 35.

    Bradley, N. L., Leopold, A. C., Ross, J. & Huffaker, W. Phenological changes reflect climate change in Wisconsin. Proc. Natl Acad. Sci. USA 96, 9701–9704 (1999).

    CAS  Article  Google Scholar 

  • 36.

    Gauzere, J., Lucas, C., Ronce, O., Davi, H. & Chuine, I. Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate. Ecol. Model. 441, 108805 (2019).

    Article  Google Scholar 

  • 37.

    Heide, O. & Prestrud, A. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 25, 109–114 (2005).

    CAS  Article  Google Scholar 

  • 38.

    van der Schoot, C., Paul, L. K. & Rinne, P. L. H. The embryonic shoot: a lifeline through winter. J. Exp. Bot. 65, 1699–1712 (2014).

    Article  CAS  Google Scholar 

  • 39.

    Fishman, S., Erez, A. & Couvillon, G. The temperature dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 124, 473–483 (1987).

    Article  Google Scholar 

  • 40.

    Weinberger, J. H. et al. Chilling requirements of peach varieties. Proc. J. Am. Soc. Hort. Sci. 56, 122–128 (1950).

  • 41.

    Polgar, C. A., Primack, R. B., Williams, E. H., Stichter, S. & Hitchcock, C. Climate effects on the flight period of Lycaenid butterflies in Massachusetts. Biol. Conserv. 160, 25–31 (2013).

    Article  Google Scholar 

  • 42.

    Vitasse, Y. Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytol. 198, 149–155 (2013).

    Article  Google Scholar 

  • 43.

    Laube, J., Sparks, T. H., Estrella, N. & Menzel, A. Does humidity trigger tree phenology? Proposal for an air humidity based framework for bud development in spring. New Phytol. 202, 350–355 (2014).

    Article  Google Scholar 

  • 44.

    Li, C., Stevens, B. & Marotzke, J. Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett. 42, 8131–8139 (2015).

    Article  Google Scholar 

  • 45.

    Balling, R. C. J., Michaels, P. J. & Knappenberger, P. C. Analysis of winter and summer warming rates in gridded temperature time series. Clim. Res. 9, 175–181 (1998).

    Article  Google Scholar 

  • 46.

    Hänninen, H. Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology. Can. J. Bot. 73, 183–199 (1995).

    Article  Google Scholar 

  • 47.

    Güsewell, S., Furrer, R., Gehrig, R. & Pietragalla, B. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Glob. Change Biol.23, 5189–5202 (2017).

    Article  Google Scholar 

  • 48.

    Roberts, A. M., Tansey, C., Smithers, R. J. & Phillimore, A. B. Predicting a change in the order of spring phenology in temperate forests. Glob. Change Biol.21, 2603–2611 (2015).

    Article  Google Scholar 

  • 49.

    Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269 (2009).

    Article  Google Scholar 

  • 50.

    Kicinski, M. Publication bias in recent meta-analyses. PLoS ONE 8, e81823 (2013).

  • 51.

    Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S. A meta-analysis of competition in field experiments. Am. Nat. 140, 539–572 (1992).

    Article  Google Scholar 

  • 52.

    Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).

    Article  Google Scholar 

  • 53.

    Lin, L. F. & Chu, H. T. Quantifying publication bias in meta-analysis. Biometrics 74, 785–794 (2018).

    Article  Google Scholar 

  • 54.

    Luedeling, E. & Brown, P. H. A global analysis of the comparability of winter chill models for fruit and nut trees. Int. J. Biometeorol. 55, 411–421 (2011).

    Article  Google Scholar 

  • 55.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • 56.

    Luedeling, E. chillR: statistical methods for phenology analysis in temperate fruit trees. R package version 0.70.17 (2019).

  • 57.

    Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).

    Article  Google Scholar 

  • 58.

    Livneh, B.et al. A spatially comprehensive, hydrometeorological data set for Mexico, the US, and Southern Canada 1950–2013. Sci. Data 2, 150042 (2015).

  • 59.

    Harrington, C. A., Gould, P. J. & St Clair, J. B. Modeling the effects of winter environment on dormancy release of Douglas-fir. For. Ecol. Manag. 259, 798–808 (2010).

    Article  Google Scholar 

  • 60.

    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. https://doi.org/10.18637/jss.v076.i01(2017).

  • 61.

    Stan Development Team. RStan: the R interface to Stan. R package version 2.17.3 (2018).

  • 62.

    Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2014).

  • 63.

    Gauzere, J. et al. Integrating interactive effects of chilling and photoperiod in phenological process-based models. A case study with two European tree species: Fagus sylvatica and Quercus petraea. Agric. For. Meteorol. 244, 9–20 (2017).

    Article  Google Scholar 

  • 64.

    Saikkonen, K. et al. Climate change-driven species’ range shifts filtered by photoperiodism. Nat. Clim. Change 2, 239 (2012).

    Article  Google Scholar 

  • 65.

    Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).

    Article  Google Scholar 

  • 66.

    Chuine, I., Garcia de Cortazar Atauri, I., Hanninen, H. & Kramer, K. in Phenology: An Integrative Environmental Science (ed. Schwartz M.) 275–293 (Springer, 2013).

  • 67.

    Stan Development Team Stan User’s Guide v.2.19 (Stan, 2019).


  • Source: Ecology - nature.com

    A controllable membrane to pull carbon dioxide out of exhaust streams

    More than a meal