in

Wrong-way migrations of benthic species driven by ocean warming and larval transport

  • 1.

    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    CAS  Google Scholar 

  • 2.

    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    Google Scholar 

  • 3.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Google Scholar 

  • 4.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS  Google Scholar 

  • 5.

    Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).

    Google Scholar 

  • 6.

    Pineda, J., Reyns, N. B. & Starczak, V. R. Complexity and simplification in understanding recruitment in benthic populations. Pop. Ecol. 51, 17–32 (2009).

    Google Scholar 

  • 7.

    Morgan, S. G., Shanks, A. L., MacMahan, J. H., Reniers, A. J. H. M. & Feddersen, F. Planktonic subsidies to surf-zone and intertidal communities. Annu. Rev. Mar. Sci. 10, 345–369 (2018).

    Google Scholar 

  • 8.

    Gaylord, B. & Gaines, S. D. Temperature or transport? Range limits in marine species mediated solely by flow. Am. Nat. 155, 769–789 (2000).

    Google Scholar 

  • 9.

    García Molinos, J., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1332 (2017).

    Google Scholar 

  • 10.

    Kumagai, N. H. et al. Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming. Proc. Natl Acad. Sci. USA 115, 8990–8995 (2017).

    Google Scholar 

  • 11.

    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    Google Scholar 

  • 12.

    Strathmann, M. F. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast (Univ. of Washington Press, 1987).

  • 13.

    Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).

    CAS  Google Scholar 

  • 14.

    Olive, P. J. W. Annual breeding cycles in marine invertebrates and environmental temperature: probing the proximate and ultimate causes of reproductive synchrony. J. Therm. Biol. 20, 79–90 (1995).

    Google Scholar 

  • 15.

    Philippart, C. J. M. et al. Climate-related changes in recruitment of the bivalve Macoma balthica. Limnol. Oceanogr. 48, 2171–2185 (2003).

    Google Scholar 

  • 16.

    Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current Ecosystem. Proc. Natl Acad. Sci. USA 112, E4065–E4074 (2015).

    CAS  Google Scholar 

  • 17.

    Shearman, R. K. & Lentz, S. J. Long-term sea surface temperature variability along the U.S. East Coast. J. Phys. Oceanogr. 40, 1004–1017 (2010).

    Google Scholar 

  • 18.

    Saba, V. S. et al. Enhanced warming of the northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans 121, 118–132 (2016).

    Google Scholar 

  • 19.

    Castelao, R., Glenn, S. & Schofield, O. Temperature, salinity, and density variability in the central Middle Atlantic Bight. J. Geophys. Res. 115, C10005 (2010).

    Google Scholar 

  • 20.

    Richaud, B., Kwon, Y.-O., Joyce, T. M., Fratantoni, P. S. & Lentz, S. J. Surface and bottom temperature and salinity climatology along the continental shelf off the Canadian and U.S. East Coasts. Cont. Shelf Res. 124, 165–181 (2016).

    Google Scholar 

  • 21.

    Roughgarden, J., Gaines, S. & Possingham, H. Recruitment dynamics in complex life cycles. Science 241, 1460–1466 (1988).

    CAS  Google Scholar 

  • 22.

    Connolly, S. R., Menge, B. A. & Roughgarden, J. A latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82, 1799–1813 (2001).

    Google Scholar 

  • 23.

    Ma, H., Grassle, J. P. & Chant, R. J. Vertical distribution of bivalve larvae along a cross-shelf transect during summer upwelling and downwelling. Mar. Biol. 149, 1123–1138 (2006).

    Google Scholar 

  • 24.

    Shanks, A. L. & Brink, L. Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Mar. Ecol. Prog. Ser. 302, 1–12 (2005).

    Google Scholar 

  • 25.

    Drake, P. T., Edwards, C. A., Morgan, S. G. & Dever, E. P. Influence of larval behavior on transport and population connectivity in a realistic simulation of the California Current System. J. Mar. Res. 71, 317–350 (2013).

    Google Scholar 

  • 26.

    Shanks, A. L. & Morgan, S. G. Testing the intermittent upwelling hypothesis: upwelling, downwelling, and subsidies to the intertidal zone. Ecol. Monogr. 88, 22–35 (2018).

    Google Scholar 

  • 27.

    Menge, B. A. & Menge, D. N. L. Testing the intermittent upwelling hypothesis: comment. Ecology 100, e02476 (2019).

    Google Scholar 

  • 28.

    Lentz, S. J. Seasonal variations in the circulation over the Middle Atlantic Bight continental shelf. J. Phys. Oceanogr. 38, 1486–1500 (2008).

    Google Scholar 

  • 29.

    Gong, D., Kohut, J. T. & Glenn, S. M. Seasonal climatology of wind-driven circulation on the New Jersey Shelf. J. Geophys. Res. 115, C04006 (2010).

    Google Scholar 

  • 30.

    Whitney, M. M. & Garvine, R. W. Wind influence on a coastal buoyant outflow. J. Geophys. Res. 110, C03014 (2005).

    Google Scholar 

  • 31.

    Largier, J. L. Considerations in estimating larval dispersal distances from oceanographic data. Ecol. Appl. 13, S71–S89 (2003).

    Google Scholar 

  • 32.

    Byers, J. E. & Pringle, J. M. Going against the flow: retention, range limits and invasions in advective environments. Mar. Ecol. Prog. Ser. 313, 27–41 (2006).

    Google Scholar 

  • 33.

    Fuchs, H. L., Gerbi, G. P., Hunter, E. J. & Christman, A. J. Waves cue distinct behaviors and differentiate transport of congeneric snail larvae from sheltered versus wavy habitats. Proc. Natl Acad. Sci. USA 115, E7532–E7540 (2018).

    CAS  Google Scholar 

  • 34.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

    Google Scholar 

  • 35.

    Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8, 1138–1146 (2005).

    Google Scholar 

  • 36.

    Freeman, B. G., Scholer, M. N., Ruiz-Guttierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).

    CAS  Google Scholar 

  • 37.

    Free, C. M. et al. Impacts of historical warming on fisheries production. Science 363, 979–983 (2019).

    CAS  Google Scholar 

  • 38.

    Young, I. R. & Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 364, 548–552 (2019).

    CAS  Google Scholar 

  • 39.

    Ocean Biogeographic Information System (Intergovernmental Oceanographic Commission of UNESCO, 2018); www.iobis.org

  • 40.

    Tingley, M. W. & Beissinger, S. R. Detecting range shifts from historical species occurrences: new perspectives on old data. Trends Ecol. Evol. 24, 625–633 (2009).

    Google Scholar 

  • 41.

    Wigley, R. L. & Theroux, R. B. Atlantic Continental Shelf and Slope of the United States; Macrobenthic Invertebrate Fauna of the Middle Atlantic Bight Region; Faunal Composition and Quantitative Distribution Professional Paper No. 529-N (USGS, 1981).

  • 42.

    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis Technical Memorandum NESDIS NGDC-24 (National Geophysical Data Center, NOAA, 2009); https://doi.org/10.7289/V5C8276M

  • 43.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1057 (2009).

    CAS  Google Scholar 

  • 44.

    Kang, D. & Curchitser, E. N. Gulf stream eddy characteristics in a high-resolution ocean model. J. Geophys. Res. Oceans 118, 4474–4487 (2013).

    Google Scholar 

  • 45.

    Narváez, D. A. et al. Long-term dynamics in Atlantic surfclam (Spisula solidissima) populations: the role of bottom water temperature. J. Mar. Sys. 141, 136–148 (2015).

    Google Scholar 

  • 46.

    Chen, Z., Curchitser, E., Chant, R. & Kang, D. Seasonal variability of the cold pool over the Mid-Atlantic Bight continental shelf. J. Geophys. Res. Oceans 123, 8203–8226 (2018).

    Google Scholar 

  • 47.

    D’Errico, J. inpaint_nans (MATLAB Central File Exchange, 2019); https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans

  • 48.

    Gypaets trigradient2 (GitHub, 2020); https://www.github.com/Gypaets/trigradient2

  • 49.

    Yeager, S. & NCAR Staff The Climate Data Guide: COREv2 Air-Sea Surface Fluxes (UCAR, 2016); https://climatedataguide.ucar.edu/climate-data/corev2-air-sea-surface-fluxes

  • 50.

    National Water Information System Data (USGS, 2016); http://waterdata.usgs.gov/nwis/

  • 51.

    Lentz, S. J. Observations and a model of the mean circulation over the Middle Atlantic Bight continental shelf. J. Phys. Oceanogr. 38, 1203–1221 (2008).

    Google Scholar 

  • 52.

    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).

    Google Scholar 


  • Source: Ecology - nature.com

    Environmental stability impacts the differential sensitivity of marine microbiomes to increases in temperature and acidity

    Assessing the effect of wind farms in fauna with a mathematical model