in

Adding forests to the water–energy–food nexus

[adace-ad id="91168"]
  • 1.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    Google Scholar 

  • 2.

    At the human-forest interface. Nat. Commun. 9, 1153 (2018).

  • 3.

    Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. & Tabarelli, M. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28, 462–468 (2013).

    Google Scholar 

  • 4.

    Arroyo‐Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).

    Google Scholar 

  • 5.

    Castañeda, A. et al. A new profile of the global poor. World Dev. 101, 250–267 (2018).

    Google Scholar 

  • 6.

    DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    CAS  Google Scholar 

  • 7.

    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    Google Scholar 

  • 8.

    Meli, P. et al. Four approaches to guide ecological restoration in Latin America. Restor. Ecol. 25, 156–163 (2017).

    Google Scholar 

  • 9.

    Robertson, M., Nichols, P., Horwitz, P., Bradby, K. & MacKintosh, D. Environmental narratives and the need for multiple perspectives to restore degraded landscapes in Australia. Ecosyst. Health 6, 119–133 (2000).

    CAS  Google Scholar 

  • 10.

    Banks-Leite, C. et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045 (2014).

    CAS  Google Scholar 

  • 11.

    Strassburg, B. B. N. et al. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3, 62–70 (2019).

    Google Scholar 

  • 12.

    Brancalion, P. H. S. et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 240, 108274 (2019).

    Google Scholar 

  • 13.

    Simpson, G. B. & Jewitt, G. P. W. The development of the water-energy-food nexus as a framework for achieving resource security: a review. Front. Environ. Sci. 7, 8 (2019).

    Google Scholar 

  • 14.

    Biggs, E. M. et al. Sustainable development and the water–energy–food nexus: a perspective on livelihoods. Environ. Sci. Policy 54, 389–397 (2015).

    Google Scholar 

  • 15.

    Hoff, H. Understanding the Nexus: Background Paper for the Bonn2011 Nexus Conference (Stockholm Environment Institute, 2011).

  • 16.

    Bazilian, M. et al. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39, 7896–7906 (2011).

    Google Scholar 

  • 17.

    Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).

    Google Scholar 

  • 18.

    Ibisch, R. B., Bogardi, J. J. & Borchardt, D. in Integrated Water Resources Management: Concept, Research and Implementation (eds Borchardt, D. et al.) 3–32 (Springer, 2016).

  • 19.

    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

    Google Scholar 

  • 20.

    Ribot, J. C. & Peluso, N. L. A Theory of Access*. Rural Sociol. 68, 153–181 (2003).

    Google Scholar 

  • 21.

    Voluntary Guidelines for Agro-Environmental Policies in Latin Amrica and The Caribbean (FAO, 2018).

  • 22.

    Pradhan, P., Costa, L., Rybski, D., Lucht, W. & Kropp, J. P. A systematic study of Sustainable Development Goal (SDG) interactions. Earth’s Future 5, 1169–1179 (2017).

    Google Scholar 

  • 23.

    Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Recovery and resilience of tropical forests after disturbance. Nat. Commun. 5, 3906 (2014).

    CAS  Google Scholar 

  • 24.

    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).

    CAS  Google Scholar 

  • 25.

    Protecting and Restoring Forests: A Story of Large Commitments yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report (NYDF Assessment Partners, 2019).

  • 26.

    Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    CAS  Google Scholar 

  • 27.

    Albrecht, T. R., Crootof, A. & Scott, C. A. The water-energy-food nexus: a systematic review of methods for nexus assessment. Environ. Res. Lett. 13, 043002 (2018).

    Google Scholar 

  • 28.

    Townsend, P. V. et al. Multiple environmental services as an opportunity for watershed restoration. For. Policy Econ. 17, 45–58 (2012).

    Google Scholar 

  • 29.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Google Scholar 

  • 30.

    van Noordwijk, M. Integrated natural resource management as pathway to poverty reduction: innovating practices, institutions and policies. Agric. Syst. 172, 60–71 (2019).

    Google Scholar 

  • 31.

    Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).

    CAS  Google Scholar 

  • 32.

    Brancalion, P. H. S. et al. A critical analysis of the Native Vegetation Protection Law of Brazil (2012): updates and ongoing initiatives. Nat. Conserv. 14, 1–15 (2016).

    Google Scholar 

  • 33.

    Soares-Filho, B. et al. Cracking Brazil’s Forest Code. Science 344, 363–364 (2014).

    CAS  Google Scholar 

  • 34.

    Pires, A. P. F., Rezende, C. L., Assad, E. D., Loyola, R. & Scarano, F. R. Forest restoration can increase the Rio Doce watershed resilience. Perspect. Ecol. Conserv. 15, 187–193 (2017).

    Google Scholar 

  • 35.

    Filoso, S., Bezerra, M. O., Weiss, K. C. B. & Palmer, M. A. Impacts of forest restoration on water yield: a systematic review. PLoS ONE 12, e0183210 (2017).

    Google Scholar 

  • 36.

    Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017).

    Google Scholar 

  • 37.

    van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele‐Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

    Google Scholar 

  • 38.

    Sheil, D. Forests, atmospheric water and an uncertain future: the new biology of the global water cycle. For. Ecosyst. 5, 19 (2018).

    Google Scholar 

  • 39.

    Karabulut, A. et al. Mapping water provisioning services to support the ecosystem-water-food-energy nexus in the Danube river basin. Ecosyst. Serv. 17, 278–292 (2016).

    Google Scholar 

  • 40.

    Richards, R. C. et al. Governing a pioneer program on payment for watershed services: stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosyst. Serv. 16, 23–32 (2015).

    Google Scholar 

  • 41.

    Vincent, J. R. et al. Valuing water purification by forests: an analysis of Malaysian panel data. Environ. Resour. Econ. 64, 59–80 (2016).

    Google Scholar 

  • 42.

    Brancalion, P., Viani, R., Strassburg, B. & Rodrigues, R. Finding the money for tropical forest restoration. Unasylva 239, 41–50 (2012).

    Google Scholar 

  • 43.

    Zemp, D. C. et al. On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys. 14, 13337–13359 (2014).

    CAS  Google Scholar 

  • 44.

    Energy Access Outlook: From Poverty to Prosperity (International Energy Agency, 2017).

  • 45.

    Specht, M. J., Pinto, S. R. R., Albuquerque, U. P., Tabarelli, M. & Melo, F. P. L. Burning biodiversity: fuelwood harvesting causes forest degradation in human-dominated tropical landscapes. Glob. Ecol. Conserv. 3, 200–209 (2015).

    Google Scholar 

  • 46.

    The State of the World’s Forests 2018 – Forest Pathways to Sustainable Development (FAO, 2018).

  • 47.

    Review of Woodfuel Biomass Production and Utilization in Africa: A Desk Study (United Nations Environment Programme, 2019).

  • 48.

    Forests and Energy (FAO, 2017); https://go.nature.com/3aI4LYZ

  • 49.

    Arias, M. E., Cochrane, T. A., Lawrence, K. S., Killeen, T. J. & Farrell, T. A. Paying the forest for electricity: a modelling framework to market forest conservation as payment for ecosystem services benefiting hydropower generation. Environ. Conserv. 38, 473–484 (2011).

    Google Scholar 

  • 50.

    Moomaw, W. R., Law, B. E. & Goetz, S. J. Focus on the role of forests and soils in meeting climate change mitigation goals: summary. Environ. Res. Lett. 15, 045009 (2020).

    Google Scholar 

  • 51.

    Tesfaye, M. A. et al. Selection of tree species and soil management for simultaneous fuelwood production and soil rehabilitation in the Ethiopian Central highlands. Land Degrad. Dev. 26, 665–679 (2015).

    Google Scholar 

  • 52.

    Beddington, J. Food security: contributions from science to a new and greener revolution. Philos. Trans. R. Soc. B 365, 61–71 (2010).

    Google Scholar 

  • 53.

    van Noordwijk, M. et al. SDG synergy between agriculture and forestry in the food, energy, water and income nexus: reinventing agroforestry? Curr. Opin. Environ. Sustain. 34, 33–42 (2018).

    Google Scholar 

  • 54.

    Vieira, D. L. M., Holl, K. D. & Peneireiro, F. M. Agro-successional restoration as a strategy to facilitate Tropical Forest recovery. Restor. Ecol 17, 451–459 (2009).

    Google Scholar 

  • 55.

    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

    Google Scholar 

  • 56.

    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).

    Google Scholar 

  • 57.

    Munang, R. T., Thiaw, I. & Rivington, M. Ecosystem management: tomorrow’s approach to enhancing food security under a changing climate. Sustainability 3, 937–954 (2011).

    Google Scholar 

  • 58.

    de Souza, S. E. X. F., Vidal, E., Chagas, Gd. F., Elgar, A. T. & Brancalion, P. H. S. Ecological outcomes and livelihood benefits of community-managed agroforests and second growth forests in Southeast Brazil. Biotropica 48, 868–881 (2016).

    Google Scholar 

  • 59.

    Cawthorn, D. M. & Hoffman, L. C. The bushmeat and food security nexus: a global account of the contributions, conundrums and ethical collisions. Food Res. Int. 76, 906–925 (2015).

    Google Scholar 

  • 60.

    Parry, L., Barlow, J. & Peres, C. A. Hunting for sustainability in tropical secondary forests. Conserv. Biol. 23, 1270–1280 (2009).

    Google Scholar 

  • 61.

    Mbiba, M., Muvengwi, J. & Ndaimani, H. Environmental correlates of livestock depredation by spotted hyaenas and livestock herding practices in a semi-arid communal landscape. Afr. J. Ecol. 56, 984–992 (2018).

    Google Scholar 

  • 62.

    Calle, A. Partnering with cattle ranchers for forest landscape restoration. Ambio 49, 593–604 (2020).

    Google Scholar 

  • 63.

    Woolf, D., Solomon, D. & Lehmann, J. Land restoration in food security programmes: synergies with climate change mitigation. Clim. Policy 18, 1260–1270 (2018).

    Google Scholar 

  • 64.

    Miccolis, A., Peneireiro, F. M., Vieira, D. L. M., Marques, H. R. & Hoffmann, M. R. M. Restoration through agroforestry: options for reconciling livelihoods with onservation in the Cerrado and Caatinga biomes in Brazil. Exp. Agric. 55, 208–225 (2019).

    Google Scholar 

  • 65.

    Araujo, M. et al. The socio-ecological Nexus+ approach used by the Brazilian Research Network on Global Climate Change. Curr. Opin. Environ. Sustain. 39, 62–70 (2019).

    Google Scholar 

  • 66.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Google Scholar 

  • 67.

    Latawiec, A. E., Strassburg, B. B., Brancalion, P. H., Rodrigues, R. R. & Gardner, T. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13, 211–218 (2015).

    Google Scholar 

  • 68.

    Chazdon, R. L. et al. A policy-driven knowledge agenda for global forest and landscape restoration. Conserv. Lett. 10, 125–132 (2017).

    Google Scholar 

  • 69.

    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).

    Google Scholar 

  • 70.

    Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).

    CAS  Google Scholar 

  • 71.

    Calmon, M. et al. Emerging threats and opportunities for large-scale ecological restoration in the Atlantic Forest of Brazil. Restor. Ecol. 19, 154–158 (2011).

    Google Scholar 

  • 72.

    Adams, C., Rodrigues, S. T., Calmon, M. & Kumar, C. Impacts of large-scale forest restoration on socioeconomic status and local livelihoods: what we know and do not know. Biotropica 48, 731–744 (2016).

    Google Scholar 

  • 73.

    Andersson, K. & Agrawal, A. Inequalities, institutions, and forest commons. Glob. Environ. Change 21, 866–875 (2011).

    Google Scholar 

  • 74.

    Galabuzi, C. et al. Strategies for empowering the local people to participate in forest restoration. Agrofor. Syst. 88, 719–734 (2014).

    Google Scholar 

  • 75.

    Terrapon-Pfaff, J., Ortiz, W., Dienst, C. & Groene, M.-C. Energising the WEF nexus to enhance sustainable development at local level It. J. Environ. Manag. 223, 409–416 (2018).

    Google Scholar 

  • 76.

    Van Laerhoven, F. Governing community forests and the challenge of solving two-level collective action dilemmas: a large-N perspective. Glob. Environ. Change 20, 539–546 (2010).

    Google Scholar 

  • 77.

    Rizvi, A. R. Nature Based Solutions for Human Resilience (IUCN, 2014).

  • 78.

    Cohen-Shacham, E., Janzen, C., Maginnis, S. & Walters, G. Nature-Based Solutions to Address Global Societal Challenges (IUCN, 2016); https://doi.org/10.2305/IUCN.CH.2016.13.en

  • 79.

    Keesstra, S. et al. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci.Total Environ. 610–611, 997–1009 (2018).

    Google Scholar 

  • 80.

    Peluso, N. L. & Vandergeest, P. Writing political forests. Antipode 52, 1083–1103 (2020).

    Google Scholar 

  • 81.

    Chazdon, R. L., Gutierrez, V., Brancalion, P. H. S., Laestadius, L. & Guariguata, M. R. Co-creating conceptual and working frameworks for implementing forest and landscape restoration based on core principles. Forests 11, 706 (2020).

    Google Scholar 

  • 82.

    Barrow, E. 300,000 hectares restored in Shinyanga, Tanzania — but what did it really take to achieve this restoration? SAPIENS 7, 1–8 (2014).

    Google Scholar 

  • 83.

    Reij, C. & Garrity, D. Scaling up farmer-managed natural regeneration in Africa to restore degraded landscapes. Biotropica 48, 834–843 (2016).

    Google Scholar 

  • 84.

    Paudyal, K., Baral, H., Lowell, K. & Keenan, R. J. Ecosystem services from community-based forestry in Nepal: realising local and global benefits. Land Use Policy 63, 342–355 (2017).

    Google Scholar 

  • 85.

    Viani, R. A. G., Braga, D. P. P., Ribeiro, M. C., Pereira, P. H. & Brancalion, P. H. S. Synergism between payments for water-related ecosystem services, ecological restoration, and Landscape Connectivity Within the Atlantic Forest hotspot. Trop. Conserv. Sci. 11, https://doi.org/10.1177/1940082918790222 (2018).


  • Source: Resources - nature.com

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields