in

Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle

  • 1.

    Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J. & Hsueh, P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents55, 105924 (2020).

    CAS  Google Scholar 

  • 2.

    Zu, Z. Y. et al. Coronavirus Disease 2019 (COVID-19): a perspective from China. Radiology. https://doi.org/10.1148/radiol.2020200490 (2020).

    Article  Google Scholar 

  • 3.

    Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature579, 265–269 (2020).

    CAS  Google Scholar 

  • 4.

    Wang, X. W. et al. Study on the resistance of severe acute respiratory syndrome-associated coronavirus. J. Virol. Methods126, 171–177 (2005).

    CAS  Google Scholar 

  • 5.

    Drosten, C. et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect. Dis.13, 745–751 (2013).

    Google Scholar 

  • 6.

    Leung, W. K. et al. Enteric involvement of severe acute respiratory syndrome – Associated coronavirus infection. Gastroenterology125, 1011–1017 (2003).

    Google Scholar 

  • 7.

    Casanova, L., Rutala, W. A., Weber, D. J. & Sobsey, M. D. Survival of surrogate coronaviruses in water. Water Res.43, 1893–1898 (2009).

    CAS  Google Scholar 

  • 8.

    Dhama, K. et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother. https://doi.org/10.1080/21645515.2020.1735227 (2020).

    Article  Google Scholar 

  • 9.

    Rodriguez-morales, A. J. et al. COVID-19, an emerging coronavirus infection: current scenario and recent developments—an overview. J. Pure Appl. Microbiol.14, 5–12 (2020).

    Google Scholar 

  • 10.

    del Rio, C. & Malani, P. N. COVID-19—new insights on a rapidly changing epidemic. JAMA323, 1339–1340 (2020).

    Google Scholar 

  • 11.

    Zheng, Y.-Y., Ma, Y.-T., Zhang, J.-Y. & Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol.17, 259–260 (2020).

    CAS  Google Scholar 

  • 12.

    Tikellis, C. & Thomas, M. C. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int. J. Pept. https://doi.org/10.1155/2012/256294 (2012).

    Article  Google Scholar 

  • 13.

    Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science. https://doi.org/10.1126/science.abc1669 (2020).

  • 14.

    Jiang, F. et al. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J. Gen. Intern. Med.35, 1545–1549 (2020).

    Google Scholar 

  • 15.

    Liu, Y., Gayle, A. A., Wilder-Smith, A. & Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med.27, taaa021 (2020).

    Google Scholar 

  • 16.

    Organization (WHO), W. H. Water, sanitation, hygiene, and waste management for the COVID-19 virus. https://apps.who.int/iris/bitstream/handle/10665/331499/WHO-2019-nCoV-IPC_WASH-2020.2-eng.pdf?sequence=1&isAllowed=y (2020).

  • 17.

    Patel, R., Moore, M. R. & Fields, M. S. Legionellosis. Bact. Infect. Humans: Epidemiol. Control19, 395–413 (2009).

    Google Scholar 

  • 18.

    Outbreak of Cryptosporidiosis associated with a water sprinkler Fountain—Minnesota, 1997. Morb. Mortal. Wkly. Rep. https://www.cdc.gov/mmwr/preview/mmwrhtml/00055289.htm (1998).

  • 19.

    Marks, P. J. et al. A school outbreak of Norwalk-like virus: evidence for airborne transmission. Epidemiol. Infect.131, 727–736 (2003).

    CAS  Google Scholar 

  • 20.

    LeDuc, J. W. Hantaviruses. in Viral Infections of Humans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0036-4_12 (1997).

  • 21.

    Dehghani, R. & Kassiri, H. A brief review on the possible role of houseflies and cockroaches in the mechanical transmission of Coronavirus Disease 2019 (COVID-19). Arch. Clin. Infect. Dis. https://doi.org/10.5812/archcid.102863 (2020).

    Article  Google Scholar 

  • 22.

    Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet395, 507–13 (2020).

    CAS  Google Scholar 

  • 23.

    Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA – J. Am. Med. Assoc.323, 1061–1069 (2020).

    CAS  Google Scholar 

  • 24.

    Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature581, 465–469 (2020).

    Google Scholar 

  • 25.

    Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet395, 497–506 (2020).

    CAS  Google Scholar 

  • 26.

    Holshue, M. L. et al. First case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med.382, 929–936 (2020).

    CAS  Google Scholar 

  • 27.

    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature579, 270–273 (2020).

    CAS  Google Scholar 

  • 28.

    Mallapaty, S. How sewage could reveal true scale of coronavirus outbreak. Nature580, 176–177 (2020).

    CAS  Google Scholar 

  • 29.

    Lesté-Lasserre, C. Coronavirus found in Paris sewage points to early warning system. Science. https://doi.org/10.1126/science.abc3799 (2020).

    Article  Google Scholar 

  • 30.

    Wang, X. W. et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th Hospital of the Chinese People’s Liberation Army. Water Sci. Technol.52, 213–221 (2005).

    CAS  Google Scholar 

  • 31.

    Gu, J., Han, B. & Wang, J. COVID-19: gastrointestinal manifestations and potential fecal–oral transmission. Gastroenterology158, 1518–1519 (2020).

    CAS  Google Scholar 

  • 32.

    Kam, K. et al. A well infant with coronavirus disease 2019 with high viral load. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa201 (2020).

  • 33.

    Ling, Y. et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin. Med. J. (Engl.).133, 1039–1043 (2020).

    Google Scholar 

  • 34.

    Wang, W. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA – J. Am. Med. Assoc.323, 1843–1844 (2020).

    CAS  Google Scholar 

  • 35.

    Tang, A. et al. Detection of Novel Coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg. Infect. Dis.26, 1337–1339 (2020).

    Google Scholar 

  • 36.

    de Graaf, M. et al. Sustained fecal-oral human-to-human transmission following a zoonotic event. Curr. Opin. Virol.22, 1–6 (2017).

    Google Scholar 

  • 37.

    Xu, Y. et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med.26, 502–505 (2020).

    CAS  Google Scholar 

  • 38.

    Xing, Y.-H. et al. Prolonged viral shedding in feces of pediatric patients with Coronavirus Disease 2019. J. Microbiol. Immunol. Infect. https://doi.org/10.1016/j.jmii.2020.03.021 (2020).

    Article  Google Scholar 

  • 39.

    Munster, V. J., Koopmans, M., van Doremalen, N., van Riel, D. & de Wit, E. A novel coronavirus emerging in China—key questions for impact assessment. N. Engl. J. Med.382, 692–694 (2020).

    CAS  Google Scholar 

  • 40.

    Harmer, D., Gilbert, M., Borman, R. & Clark, K. L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett.532, 107–110 (2002).

    CAS  Google Scholar 

  • 41.

    Weiss, S. R. & Navas-Martin, S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome Coronavirus. Microbiol. Mol. Biol. Rev.69, 635–664 (2005).

    CAS  Google Scholar 

  • 42.

    Xiao, F. et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology158, 1831–1833 (2020).

    CAS  Google Scholar 

  • 43.

    Zhang, W. et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg. Microbes Infect.9, 386–389 (2020).

    CAS  Google Scholar 

  • 44.

    Zhang, Y. et al. Isolation of 2019-nCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19). China CDC Wkly.2, 123–124 (2020).

    Google Scholar 

  • 45.

    Lee, P. I. & Hsueh, P. R. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J. Microbiol. Immunol. Infect. https://doi.org/10.1016/j.jmii.2020.02.001 (2020).

    Article  Google Scholar 

  • 46.

    Xu, R. et al. Saliva: potential diagnostic value and transmission of 2019-nCoV. Int. J. Oral. Sci.12, 11 (2020).

    CAS  Google Scholar 

  • 47.

    Bosch, A. Human enteric viruses in the water environment: a minireview. Int. Microbiol.1, 191–196 (1998).

    CAS  Google Scholar 

  • 48.

    Hart, O. E. & Halden, R. U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ.730, 138875 (2020).

    CAS  Google Scholar 

  • 49.

    Zhang, N. et al. Virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. Preprint at https://doi.org/10.1101/2020.03.28.20043059v1 (2020).

  • 50.

    Brown, D. M., Butler, D., Orman, N. R. & Davies, J. W. Gross solids transport in small diameter sewers. Water Sci. Technol.33, 25–30 (1996).

    Google Scholar 

  • 51.

    Hellmér, M. et al. Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks. Appl. Environ. Microbiol.80, 6771–6781 (2014).

    Google Scholar 

  • 52.

    Global Water Pathogen Project. In Part four. Management of risk from excreta and wastewater. Global Water Pathogen Project. http://www.waterpathogens.org/node/103 (2019).

  • 53.

    Bhowmick, G. D., Das, S., Ghangrekar, M. M., Mitra, A. & Banerjee, R. Improved wastewater treatment by combined system of microbial fuel cell with activated carbon/TiO2 cathode catalyst and membrane bioreactor. J. Inst. Eng. Ser. A.100, 675–682 (2019).

    CAS  Google Scholar 

  • 54.

    Lodder, W. & de Roda Husman, A. M. SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol. Hepatol.5, 533–534 (2020).

    Google Scholar 

  • 55.

    Gerba, C. P., Stagg, C. H. & Abadie, M. G. Characterization of sewage solid-associated viruses and behavior in natural waters. Water Res.12, 805–812 (1978).

    Google Scholar 

  • 56.

    John, D. E. & Rose, J. B. Review of factors affecting microbial survival in groundwater. Environ. Sci. Technol.39, 7345–7356 (2005).

    CAS  Google Scholar 

  • 57.

    Yang, H. et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol.3, 1742–1752 (2005).

    CAS  Google Scholar 

  • 58.

    Zhang, C. M., Xu, L. M., Xu, P. C. & Wang, X. C. Elimination of viruses from domestic wastewater: requirements and technologies. World J. Microbiol. Biotechnol.32, 1–9 (2016).

    Google Scholar 

  • 59.

    Du, Y. et al. Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: a review. J. Environ. Sci.58, 51–63 (2017).

    Google Scholar 

  • 60.

    Yeo, C., Kaushal, S. & Yeo, D. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol.5, 335–337 (2020).

    Google Scholar 

  • 61.

    Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention (CDC). https://www.cdc.gov/coronavirus/2019-ncov/php/water.html (2020).

  • 62.

    Medema, G., Heijnen, L., Elsinga, G., Italiaander, R. & Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. A-F. https://doi.org/10.1021/acs.estlett.0c00357 (2020).

  • 63.

    Ahmed, W. et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ.728, 138764 (2020).

    CAS  Google Scholar 

  • 64.

    La Rosa, G. et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ.736, 139652 (2020).

    Google Scholar 

  • 65.

    Randazzo, W., Cuevas-Ferrando, E., Sanjuan, R., Domingo-Calap, P. & Sanchez, G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Preprint at https://doi.org/10.1101/2020.04.23.20076679v2 (2020).

  • 66.

    Wurtzer, S., Marechal, V., Mouchel, J.-M. & Moulin, L. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. Preprint at https://doi.org/10.1101/2020.04.12.20062679v1.full.pdf (2020).

  • 67.

    National status of waste water generation & treatment. ENVIS Centre on Hygiene, Sanitation, Sewage Treatment Systems and Technology. http://www.sulabhenvis.nic.in/Database/STST_wastewater_2090.aspx (2019).

  • 68.

    Tibbetts, J. Combined sewer systems: down, dirty, and out of date. Environ. Health Perspect.113, A 465–A 467 (2005).

    Google Scholar 

  • 69.

    De Man, H. et al. Quantitative assessment of infection risk from exposure to waterborne pathogens in urban floodwater. Water Res.48, 90–99 (2014).

    Google Scholar 

  • 70.

    Banks, D., Karnachuk, O. V., Parnachev, V. P., Holden, W. & Frengstad, B. Groundwater contamination from rural pit latrines: examples from Siberia and Kosova. J. Chart. Inst. Water Environ. Manag.16, 147–152 (2002).

    Google Scholar 

  • 71.

    The Sphere Project & The Sphere Project. 4. Minimum Standards in Water Supply, Sanitation and Hygiene Promotion. in Humanitarian Charter and Minimum Standards in Humanitarian Response. https://doi.org/10.3362/9781908176202.004 (2011).

  • 72.

    Masclaux, F. G., Hotz, P., Gashi, D., Savova-Bianchi, D. & Oppliger, A. Assessment of airborne virus contamination in wastewater treatment plants. Environ. Res.133, 260–265 (2014).

    CAS  Google Scholar 

  • 73.

    Wigginton, K. R., Ye, Y. & Ellenberg, R. M. Emerging investigators series: The source and fate of pandemic viruses in the urban water cycle. Environ. Sci.: Water Res. Technol.1, 735–746 (2015).

    Google Scholar 

  • 74.

    Yu, I. T. S., Qiu, H., Tse, L. A. & Wong, T. W. Severe acute respiratory syndrome beyond amoy gardens: completing the incomplete legacy. Clin. Infect. Dis.58, 683–686 (2014).

    Google Scholar 

  • 75.

    Regan, H. How can the coronavirus spread through bathroom pipes? Experts are investigating in Hong Kong. CNN. https://edition.cnn.com/2020/02/12/asia/hong-kong-coronavirus-pipes-intl-hnk/index.html (2020).

  • 76.

    Press Trust of India. Kapashera hot spot: No space for social-distancing in cramped rooms, common toilets. INDIA TODAY. https://www.indiatoday.in/india/story/kapashera-hot-spot-no-space-for-social-distancing-in-cramped-rooms-common-toilets-1673968-2020-05-03 (2020).

  • 77.

    Li, R. A., McDonald, J. A., Sathasivan, A. & Khan, S. J. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: a systematic review. Water Res.153, 335–348 (2019).

    CAS  Google Scholar 

  • 78.

    Naidoo, S. & Olaniran, A. O. Treated wastewater effluent as a source of microbial pollution of surface water resources. Int. J. Environ. Res. Public Health11, 249–270 (2013).

    Google Scholar 

  • 79.

    Water Quality and Wastewater. United Nations. https://www.unwater.org/water-facts/quality-and-wastewater/ (2020).

  • 80.

    Heller, L., Mota, C. R. & Greco, D. B. COVID-19 faecal-oral transmission: Are we asking the right questions? Sci. Total Environ.729, 138919 (2020).

    CAS  Google Scholar 

  • 81.

    Rabenau, H. F. et al. Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol.194, 1–6 (2005).

    CAS  Google Scholar 

  • 82.

    Duan, S. M. et al. Stability of SARS Coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci.16, 246–55 (2003).

    Google Scholar 

  • 83.

    Jackwood, M. W. The relationship of severe acute respiratory syndrome Coronavirus with avian and other Coronaviruses. Avian Dis.50, 315–320 (2006).

    Google Scholar 

  • 84.

    Gundy, P. M., Gerba, C. P. & Pepper, I. L. Survival of Coronaviruses in Water and Wastewater. Food Environ. Virol.1, 10–14 (2009).

    Google Scholar 

  • 85.

    Peng, L. et al. SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs specimens. J. Med. Virol. 1–5. https://doi.org/10.1002/jmv.25936 (2020).

  • 86.

    World Health Organization. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-in-suspected-human-cases-20200117 (2020).

  • 87.

    Yates, M. V., Gerba, C. P. & Kelley, L. M. Virus persistence in groundwater. Appl. Environ. Microbiol.49, 778–781 (1985).

    CAS  Google Scholar 

  • 88.

    Hurst, C. J., Benton, W. H. & McClellan, K. A. Thermal and water source effects upon the stability of enteroviruses in surface freshwaters. Can. J. Microbiol.35, 474–480 (1989).

    CAS  Google Scholar 

  • 89.

    Enriquez, C. E., Hurst, C. J. & Gerba, C. P. Survival of the enteric adenoviruses 40 and 41 in tap, sea, and waste water. Water Res.29, 2548–2553 (1995).

    CAS  Google Scholar 

  • 90.

    World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum. https://www.ncbi.nlm.nih.gov/pubmed/28759192 (2017).

  • 91.

    Wang, J. et al. SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the Coronavirus Disease 2019 outbreak in a Chinese hospital. Int. J. Infect. Dis.94, 103–106 (2020).

    Google Scholar 

  • 92.

    Ghernaout, D. & Elboughdiri, N. Environmental engineering for stopping viruses pandemics. Open Access Library J. https://doi.org/10.4236/oalib.1106299 (2020).

  • 93.

    Mao, K., Zhang, H. & Yang, Z. Can a paper-based device trace COVID-19 sources with wastewater-based epidemiology? Environ. Sci. Technol.54, 3733–3735 (2020).

    CAS  Google Scholar 

  • 94.

    Hilaire, B. G. S. et al. A rapid, low cost, and highly sensitive SARS-CoV-2 diagnostic based on whole genome sequencing. Preprint at https://doi.org/10.1101/2020.04.25.061499 (2020).

  • 95.

    Cornwall, W. Can you put a price on COVID-19 options? Experts weigh lives versus economics. Science. https://doi.org/10.1126/science.abb9969 (2020).

    Article  Google Scholar 

  • 96.

    Pastorino, B., Touret, F., Gilles, M., de Lamballerie, X. & Charrel, R. N. Evaluation of heating and chemical protocols for inactivating SARS-CoV-2. Preprint at https://doi.org/10.1101/2020.04.11.036855v1.full (2020).

  • 97.

    Gormley, M., Aspray, T. J. & Kelly, D. A. COVID-19: mitigating transmission via wastewater plumbing systems. Lancet Glob. Heal.8, E643 (2020).

    Google Scholar 

  • 98.

    Bartram, J., Brocklehurst, C., Bradley, D., Muller, M. & Evans, B. Policy review of the means of implementation targets and indicators for the sustainable development goal for water and sanitation. npj Clean. Water1, 3 (2018).

    Google Scholar 


  • Source: Resources - nature.com

    Solarizing networks

    Light limitation regulates the response of autumn terrestrial carbon uptake to warming