in

Increasing dependence of lowland populations on mountain water resources

[adace-ad id="91168"]
  • 1.

    Kummu, M. et al. The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 6, 38495 (2016).

    CAS  Google Scholar 

  • 2.

    Wada, Y. et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).

    Google Scholar 

  • 3.

    Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).

  • 4.

    Bandyopadhyay, J., Kraemer, D., Kattelmann, R. & Kundzewicz, Z. W. in Mountains of the World (eds Messerli, B. & Ives, J. D.) 131–155 (Parthenon, 1997).

  • 5.

    Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M. & Weingartner, R. Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour. Res. 43, W07447 (2007).

    Google Scholar 

  • 6.

    Green, P. A. et al. Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions. Glob. Environ. Change 34, 108–118 (2015).

    Google Scholar 

  • 7.

    Debarbieux, B. & Price, M. F. Representing mountains: from local and national to global common good. Geopolitics 13, 148–168 (2008).

    Google Scholar 

  • 8.

    Wohl, E. E. Disconnected Rivers: Linking Rivers to Landscapes (Yale Univ. Press, 2004).

  • 9.

    Bach, A. W. & Price, L. W. in Mountain Geography (eds Price, M. F. et al.) 41–84 (Univ. of California Press, 2013).

  • 10.

    Wehrli, A. Why mountains matter for sustainable development: Switzerland’s new mountain program in development cooperation. Mt. Res. Dev. 34, 405–409 (2014).

    Google Scholar 

  • 11.

    Kundzewicz, Z. W. & Kraemer, D. in Ecohydrology of High Mountain Areas: Proceedings of the International Conference on Ecohydrology of High Mountain Areas, Kathmandu, Nepal, 24–28 March 1996 (eds Chalise, S. R. et al.) 175–185 (Kathmandu, 1998).

  • 12.

    Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    CAS  Google Scholar 

  • 13.

    United Nations World Water Assessment Programme (WWAP) (ed.) The United Nations World Water Development Report 3: Water in a Changing World (UNESCO and Earthscan, 2009).

  • 14.

    Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    CAS  Google Scholar 

  • 15.

    Adam, J. C., Hamlet, A. F. & Lettenmaier, D. P. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Process. 23, 962–972 (2009).

    Google Scholar 

  • 16.

    Viviroli, D. et al. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 15, 471–504 (2011).

    Google Scholar 

  • 17.

    Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002).

    CAS  Google Scholar 

  • 18.

    Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).

    Google Scholar 

  • 19.

    Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018).

    Google Scholar 

  • 20.

    Viviroli, D., Weingartner, R. & Messerli, B. Assessing the hydrological significance of the world’s mountains. Mt. Res. Dev. 23, 32–40 (2003).

    Google Scholar 

  • 21.

    Immerzeel, W. W. & Bierkens, M. F. P. Asia’s water balance. Nat. Geosci. 5, 841–842 (2012).

    CAS  Google Scholar 

  • 22.

    Wada, Y., Gleeson, T. & Esnault, L. Wedge approach to water stress. Nat. Geosci. 7, 615–617 (2014).

    CAS  Google Scholar 

  • 23.

    Ghassemi, F. & White, I. Inter-Basin Water Transfer: Case Studies from Australia, United States, Canada, China, and India (Cambridge Univ. Press, 2007).

  • 24.

    Misra, A. K. et al. Proposed river-linking project of India: a boon or bane to nature. Environ. Geol. 51, 1361–1376 (2007).

    Google Scholar 

  • 25.

    Meybeck, M., Kummu, M. & Dürr, H. H. Global hydrobelts and hydroregions: improved reporting scale for water-related issues? Hydrol. Earth Syst. Sci. 17, 1093–1111 (2013).

    Google Scholar 

  • 26.

    Vörösmarty, C. J., Green, P. A., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Google Scholar 

  • 27.

    Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A global hydrological simulation to specify the sources of water used by humans. Hydrol. Earth Syst. Sci. 22, 789–817 (2018).

    Google Scholar 

  • 28.

    Messerli, B. Global change and the world’s mountains: where are we coming from, and where are we going to? Mt. Res. Dev. 32, S55–S63 (2012).

    Google Scholar 

  • 29.

    Biemans, H. et al. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2, 594–601 (2019).

    Google Scholar 

  • 30.

    Falkenmark, M. & Rockström, J. The new blue and green water paradigm: breaking new ground for water resources planning and management. J. Water Resour. Plan. Manage. 132, 129–132 (2006).

    Google Scholar 

  • 31.

    Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    CAS  Google Scholar 

  • 32.

    Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y. & Diffenbaugh, N. S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 10, 114016 (2015).

    Google Scholar 

  • 33.

    Stewart, I. T. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol. Process. 23, 78–94 (2009).

    Google Scholar 

  • 34.

    Huss, M. et al. Toward mountains without permanent snow and ice. Earth’s Future 5, 418–435 (2017).

    Google Scholar 

  • 35.

    Salzmann, N., Huggel, C., Rohrer, M. & Stoffel, M. Data and knowledge gaps in glacier, snow and related runoff research—a climate change adaptation perspective. J. Hydrol. 518, 225–234 (2014).

    Google Scholar 

  • 36.

    Pepin, N. C. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Google Scholar 

  • 37.

    Barry, R. G. Mountain Weather and Climate 3rd edn (Cambridge Univ. Press, 2008).

  • 38.

    Beniston, M. Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia 562, 3–16 (2006).

    Google Scholar 

  • 39.

    Messerli, B., Viviroli, D. & Weingartner, R. Mountains of the world: vulnerable water towers for the 21st century. Ambio Spec. Rep. 13, 29–34 (2004).

    Google Scholar 

  • 40.

    Kummu, M. et al. Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th–21st centuries. Environ. Res. Lett. 11, 34010 (2016).

    Google Scholar 

  • 41.

    Grover, V. I., Borsdorf, A., Breuste, J., Tiwari, P. C. & Frangetto, F. W. Impact of Global Changes on Mountains: Responses and Adaptation (CRC, 2014).

  • 42.

    Veldkamp, T. I. E., Wada, Y., Aerts, J. C. J. H. & Ward, P. J. Towards a global water scarcity risk assessment framework: incorporation of probability distributions and hydro-climatic variability. Environ. Res. Lett. 11, 24006 (2016).

    Google Scholar 

  • 43.

    Falkenmark, M. Forward to the future: a conceptual framework for water dependence. Ambio 28, 356–361 (1999).

    Google Scholar 

  • 44.

    Meybeck, M., Dürr, H. H. & Vörösmarty, C. J. Global coastal segmentation and its river catchment contributors: a new look at land–ocean linkage. Glob. Biogeochem. Cycles 20, GB1S90 (2006).

    Google Scholar 

  • 45.

    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).

    Google Scholar 

  • 46.

    Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Google Scholar 

  • 47.

    Gerasimov, I. P. et al. Physio-geographical World Atlas (Atlas Mira) (Scientific Academy of the USSR and Cartographic and Geodesic Central Committee, 1964).

  • 48.

    Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    CAS  Google Scholar 

  • 49.

    Borsdorf, A. & Braun, V. The European and global dimension of mountain research. Rev. Geogr. Alp. 96, 117–129 (2008).

    Google Scholar 

  • 50.

    Ives, J. D., Messerli, B. & Thompson, M. Research strategy for the Himalayan region: conference conclusions and overview. Mt. Res. Dev. 7, 332–344 (1987).

    Google Scholar 

  • 51.

    Wiesmann, U. Socioeconomic viewpoints on highland–lowland systems: a case study on the northwest side of Mount Kenya. Mt. Res. Dev. 12, 375–381 (1992).

    Google Scholar 

  • 52.

    Messerli, B. & Winiger, M. Climate, environmental change, and resources of the African mountains from the Mediterranean to the Equator. Mt. Res. Dev. 12, 315–336 (1992).

    Google Scholar 

  • 53.

    Weingartner, R., Viviroli, D. & Schädler, B. Water resources in mountain regions: a methodological approach to assess the water balance in a highland-lowland-system. Hydrol. Process. 20, 578–585 (2007).

    Google Scholar 

  • 54.

    Ives, J. D. in Conservation and Development in Northern Thailand (eds Ives, J. D. et al.) 3–8 (United Nations Univ., 1980).

  • 55.

    Meybeck, M., Green, P. A. & Vörösmarty, C. J. A new typology for mountains and other relief classes: an application to global continental water resources and population distribution. Mt. Res. Dev. 21, 34–45 (2001).

    Google Scholar 

  • 56.

    Danielson, J. J. & Gesch, D. B. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) (USGS, 2011).

  • 57.

    Fairbridge, R. W. in The Encyclopedia of Geomorphology (ed. Fairbridge, R. W.) 745–747 (Rhodes, 1968).

  • 58.

    Browne, T., Fox, R. & Funnell, D. C. The “invisible” mountains: using GIS to examine the extent of mountain terrain in South Africa. Mt. Res. Dev. 24, 28–34 (2004).

    Google Scholar 

  • 59.

    Munia, H., Guillaume, J. H. A., Porkka, M., Wada, Y. & Kummu, M. Water stress in global transboundary river basins: significance of upstream water use on downstream stress. Environ. Res. Lett. 11, 14002 (2016).

    Google Scholar 

  • 60.

    Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697 (2017).

    CAS  Google Scholar 

  • 61.

    Vörösmarty, C. J. & Meybeck, M. in Vegetation, Water, Humans, and the Climate (eds Kabat, P. et al.) 517–572 (Springer, 2004).

  • 62.

    Viviroli, D. & Weingartner, R. The hydrological significance of mountains—from regional to global scale. Hydrol. Earth Syst. Sci. 8, 1016–1029 (2004).

    Google Scholar 

  • 63.

    Wada, Y., de Graaf, I. E. M. & van Beek, L. P. H. High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model. Earth Syst. 8, 735–763 (2016).

    Google Scholar 

  • 64.

    Bergström, S. in Computer Models of Watershed Hydrology (ed. Singh, V. P.) 443–476 (Water Resources Publications, 1995).

  • 65.

    Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Google Scholar 

  • 66.

    Kaser, G., Großhauser, M. & Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci. USA 107, 20223–20227 (2010).

    CAS  Google Scholar 

  • 67.

    Hagemann, S. & Gates, L. D. Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Clim. Dyn. 21, 349–359 (2003).

    Google Scholar 

  • 68.

    Verdin, K. L. & Greenlee, S. K. HYDRO1k Documentation (USGS, 1998).

  • 69.

    Garcia, D. Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54, 1167–1178 (2010).

    Google Scholar 

  • 70.

    Tobler, W. R. Smooth pycnophylactic interpolation for geographical regions. J. Am. Stat. Assoc. 74, 519–530 (1979).

    CAS  Google Scholar 

  • 71.

    Kallio, M. Smoodjustment Zenodo https://doi.org/10.5281/zenodo.3563243 (2019).

  • 72.

    Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol. Earth Syst. Sci. 15, 3785–3808 (2011).

    Google Scholar 

  • 73.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  • 74.

    Uppala, S. M. et al. The ERA‐40 re‐analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).

    Google Scholar 

  • 75.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Google Scholar 

  • 76.

    Adam, J. C. & Lettenmaier, D. P. Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res. Atmos. 108, 4257 (2003).

    Google Scholar 

  • 77.

    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).

    Google Scholar 

  • 78.

    Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H. & Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18, 5041–5059 (2014).

    Google Scholar 

  • 79.

    Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Google Scholar 

  • 80.

    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS  Google Scholar 

  • 81.

    Siebert, S. et al. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 19, 1521–1545 (2015).

    Google Scholar 

  • 82.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS  Google Scholar 

  • 83.

    Döll, P. & Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 38, 1037 (2002).

    Google Scholar 

  • 84.

    Wada, Y. & Bierkens, M. F. P. Sustainability of global water use: past reconstruction and future projections. Environ. Res. Lett. 9, 104003 (2014).

    Google Scholar 

  • 85.

    Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Data from: Increasing dependence of lowland populations on mountain water resources (Dryad Digital Repository, 2020); https://doi.org/10.5061/dryad.ns1rn8pnt

  • 86.

    Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).

    Google Scholar 


  • Source: Resources - nature.com

    Progressive nitrogen limitation across the Tibetan alpine permafrost region

    Behavioural responses of white sharks to specific baits during cage diving ecotourism