in

Observed changes in dry-season water availability attributed to human-induced climate change

  • 1.

    Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).

  • 2.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

  • 3.

    Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 3 (WMO, 2018).

  • 4.

    Pendergrass, A. G. & Knutti, R. The uneven nature of daily precipitation and its change. Geophys. Res. Lett. 45, 980–11,988 (2018).

    Article  Google Scholar 

  • 5.

    Greve, P., Roderick, M. L. & Seneviratne, S. I. Simulated changes in aridity from the last glacial maximum to 4xCO2. Environ. Res. Lett. 12, 114021 (2017).

    Article  Google Scholar 

  • 6.

    Greve, P., Gudmundsson, L. & Seneviratne, S. I. Regional scaling of annual mean precipitation and water availability with global temperature change. Earth Syst. Dyn. 9, 227–240 (2018).

    Article  Google Scholar 

  • 7.

    Kumar, S., Lawrence, D. M., Dirmeyer, P. A. & Sheffield, J. Less reliable water availability in the 21st century climate projections. Earth Future 2, 152–160 (2013).

    Article  Google Scholar 

  • 8.

    Kumar, S., Allan, R. P., Zwiers, F., Lawrence, D. M. & Dirmeyer, P. A. Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land. Geophys. Res. Lett. 42, 10867–10875 (2015).

    Google Scholar 

  • 9.

    Orlowsky, B. & Seneviratne, S. I. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol. Earth Syst. Sci. 17, 1765–1781 (2013).

    Article  Google Scholar 

  • 10.

    Marvel, K. et al. Twentieth-century hydroclimate changes consistent with human influence. Nature 569, 59–65 (2019).

    Article  Google Scholar 

  • 11.

    Zhang, X. et al. Detection of human influence on twentieth-century precipitation trends. Nature 448, 461–465 (2007).

    Article  Google Scholar 

  • 12.

    Marvel, K. & Bonfils, C. Identifying external influences on global precipitation. Proc. Natl Acad. Sci. USA 110, 301–19,306 (2013).

    Article  Google Scholar 

  • 13.

    Douville, H., Ribes, A., Decharme, B., Alkama, R. & Sheffield, J. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nat. Clim. Change 3, 59–62 (2013).

    Article  Google Scholar 

  • 14.

    Gudmundsson, L., Seneviratne, S. I. & Zhang, X. Anthropogenic climate change detected in European renewable freshwater resources. Nat. Clim. Change 7, 813–816 (2017).

    Article  Google Scholar 

  • 15.

    Gu, X. et al. Attribution of global soil moisture drying to human activities: a quantitative viewpoint. Geophys. Res. Lett. 46, 2573–2582 (2019).

    Article  Google Scholar 

  • 16.

    Palmer, W. C. Meteorological Drought Research Paper No. 45 (Department of Commerce, 1965).

  • 17.

    Dai, A. Drought under global warming: a review. WIREs Clim. Change 2, 45–65 (2010).

    Article  Google Scholar 

  • 18.

    Briffa, K. R., van der Schrier, G. & Jones, P. D. Wet and dry summers in Europe since 1750: evidence of increasing drought. Int. J. Climatol. 29, 1894–1905 (2009).

    Article  Google Scholar 

  • 19.

    Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

    Article  Google Scholar 

  • 20.

    Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

    Article  Google Scholar 

  • 21.

    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    Article  Google Scholar 

  • 22.

    Held, I. & Soden, B. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  • 23.

    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).

    Article  Google Scholar 

  • 24.

    Byrne, M. P. & O’gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: why the ‘“wet-get-wetter, dry-get-drier”’ scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).

    Article  Google Scholar 

  • 25.

    Chou, C. et al. Increase in the range between wet and dry season precipitation. Nat. Geosci. 6, 263–267 (2013).

    Article  Google Scholar 

  • 26.

    Boisier, J. P., Ciais, P., Ducharne, A. & Guimberteau, M. Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat. Clim. Change 5, 656–660 (2015).

    Article  Google Scholar 

  • 27.

    Ghiggi, G., Humphrey, V., Seneviratne, S. I. & Gudmundsson, L. GRUN: an observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data 11, 1655–1674 (2019).

    Article  Google Scholar 

  • 28.

    Humphrey, V. & Gudmundsson, L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 11, 1153–1170 (2019).

    Article  Google Scholar 

  • 29.

    van den Hurk, B. et al. LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project—aims, setup and expected outcome. Geosci. Model Dev. 9, 2809–2832 (2016).

    Article  Google Scholar 

  • 30.

    Kim, H. J. Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions (Experiment 1) (DIAS, 2017).

  • 31.

    Wilcox, L. J., Highwood, E. J. & Dunstone, N. J. The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett. 8, 024033 (2013).

    Article  Google Scholar 

  • 32.

    Viovy, N. CRUNCEP Version 7—Atmospheric Forcing Data for the Community Land Model (NCAR, 2018).

  • 33.

    Seneviratne, S. I. et al. Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event. Water Resour. Res. 48, W06526 (2012).

    Article  Google Scholar 

  • 34.

    Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).

    Article  Google Scholar 

  • 35.

    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  Google Scholar 

  • 36.

    Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D. & Seneviratne, S. I. Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change. Earth Future 7, 692–703 (2019).

    Google Scholar 

  • 37.

    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  Google Scholar 

  • 38.

    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    Article  Google Scholar 

  • 39.

    Murray‐Tortarolo, G. et al. The dry season intensity as a key driver of NPP trends. Geophys. Res. Lett. 43, 2632–2639 (2016).

    Article  Google Scholar 

  • 40.

    Piao, S. et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. USA 104, 242–15,247 (2007).

    Article  Google Scholar 

  • 41.

    Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).

    Article  Google Scholar 

  • 42.

    Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2013).

  • 43.

    Taylor, K. E. et al. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  • 44.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    Article  Google Scholar 


  • Source: Resources - nature.com

    Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion

    The biodiversity leader who is fighting for nature amid a pandemic