in

South-to-North Water Diversion stabilizing Beijing’s groundwater levels

  • 1.

    Margat, J. F. & Gun, Jvd. Groundwater Around the World: A Geographic Synopsis (CRC Press, Boca Raton, 2013).

    Google Scholar 

  • 2.

    Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    ADS  Google Scholar 

  • 3.

    Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 109, 9320–9325 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Aeschbach-Hertig, W. & Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 5, 853–861 (2012).

    ADS  CAS  Google Scholar 

  • 7.

    Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resour. Res. 51, 5198–5216 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Long, D. et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 192, 198–216 (2017).

    ADS  Google Scholar 

  • 11.

    Ashraf, B. et al. Quantifying anthropogenic stress on groundwater resources. Sci. Rep. 7, 12910 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).

    ADS  Google Scholar 

  • 14.

    Longuevergne, L., Scanlon, B. R. & Wilson, C. R. GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA. Water Resour. Res. 46, 11517 (2010).

    ADS  Google Scholar 

  • 15.

    Voss, K. A. et al. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 49, 904–914 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110–2118 (2013).

    ADS  Google Scholar 

  • 17.

    Huang, Z. Y. et al. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett. 42, 1791–1799 (2015).

    ADS  Google Scholar 

  • 18.

    Liu, C. M., Yu, J. J. & Kendy, E. Groundwater exploitation and its impact on the environment in the North China Plain. Water Int. 26, 265–272 (2001).

    Google Scholar 

  • 19.

    Chaussard, E., Wdowinski, S., Cabral-Cano, E. & Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 140, 94–106 (2014).

    ADS  Google Scholar 

  • 20.

    Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).

    ADS  Google Scholar 

  • 21.

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    ADS  Google Scholar 

  • 22.

    Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam. 5, 15–40 (2014).

    ADS  Google Scholar 

  • 23.

    Chen, M. et al. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sens. 8, 468 (2016).

    ADS  Google Scholar 

  • 24.

    Gleeson, T. et al. Groundwater sustainability strategies. Nat. Geosci. 3, 378–379 (2010).

    ADS  CAS  Google Scholar 

  • 25.

    Condon, L. E. & Maxwell, R. M. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 5, eaav4574 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Beijing Water Authority. Beijing Water Resources Bulletin 2003–2016 (Beijing Water Authority, 2016).

  • 27.

    Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).

    ADS  CAS  Google Scholar 

  • 28.

    Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    Hartmann, A., Gleeson, T., Wada, Y. & Wagener, T. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc. Natl. Acad. Sci. USA 114, 2842–2847 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    ADS  Google Scholar 

  • 31.

    Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Google Scholar 

  • 32.

    Su, B. D. et al. Drought losses in China might double between the 1.5 degrees C and 2.0 degrees C warming. Proc. Natl. Acad. Sci. USA 115, 10600–10605 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11, 035013 (2016).

    ADS  Google Scholar 

  • 35.

    Schiermeier, Q. Purification with a pinch of salt. Nature 452, 260–261 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Muller, M. Lessons from Cape Town’s drought. Nature 559, 174–176 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 38.

    Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang 9, 358–369 (2019).

    ADS  Google Scholar 

  • 39.

    Xia, J., Wang, Q., Zhang, X., Wang, R. & She, D. X. Assessing the influence of climate change and inter-basin water diversion on Haihe River basin, eastern China: a coupled model approach. Hydrogeol. J. 26, 1455–1473. (2018).

    ADS  Google Scholar 

  • 40.

    Li, X., Ye, S. Y., Wei, A. H., Zhou, P. P. & Wang, L. H. Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China. Hydrogeol. J. 25, 1733–1744 (2017).

    ADS  Google Scholar 

  • 41.

    Zhang, M. L., Hu, L. T., Yao, L. L. & Yin, W. J. Numerical studies on the influences of the South-to-North Water Transfer Project on groundwater level changes in the Beijing Plain, China. Hydrol. Process. 32, 1858–1873 (2018).

    ADS  Google Scholar 

  • 42.

    Vorosmarty, C. J., Douglas, E. M., Green, P. A. & Revenga, C. Geospatial indicators of emerging water stress: an application to Africa. Ambio 34, 230–236 (2005).

    PubMed  Google Scholar 

  • 43.

    Beijing Government. in 13th Five-Year Development Plan of Water Resources in Beijing (ed. People’s Government of Beijing Municipality) (Beijing Government, Beijing, 2016).

  • 44.

    Beijing Municipal Commission for City Planning and Land Resources Management. Beijing City Overall Planning (2016–2035) (Beijing Municipal Commission for City Planning and Land Resources Management, 2017).

  • 45.

    Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4, 035006 (2009).

    ADS  Google Scholar 

  • 46.

    Barnett, J., Rogers, S., Webber, M., Finlayson, B. & Wang, M. Transfer project cannot meet China’s water needs. Nature 527, 295–297 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T. & Lund, J. Water and climate: recognize anthropogenic drought. Nature 524, 409–411 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 48.

    Chen, D. et al. The impact of water transfers from the lower Yangtze River on water security in Shanghai. Appl. Geogr. 45, 303–310 (2013).

    Google Scholar 

  • 49.

    Webber, M. et al. Impact of the Three Gorges Dam, the South-North Water Transfer Project and water abstractions on the duration and intensity of salt intrusions in the Yangtze River estuary. Hydrol. Earth Syst. Sci. 19, 4411–4425 (2015).

    ADS  Google Scholar 

  • 50.

    Wang, Y. G., Zhang, W. S., Zhao, Y. X., Peng, H. & Shi, Y. Y. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River. J. Hydrol. 541, 1348–1362 (2016).

    ADS  Google Scholar 

  • 51.

    Niswonger, R. G., Panday S. & Ibaraki, M. MODFLOW-NWT: A Newton Formulation for MODFLOW-2005 (US Geological Survey, 2005).

  • 52.

    Cao, G., Zheng, C., Scanlon, B. R., Liu, J. & Li, W. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour. Res. 49, 159–175 (2013).

    ADS  Google Scholar 

  • 53.

    Burek, P. et al. Development of the Community Water Model (CWatM v1.04): a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geosci Model Dev Discuss 2019, 1–49. (2019).

    Google Scholar 

  • 54.

    Kendy, E. et al. A soil−water−balance approach to quantify groundwater recharge from irrigated cropland in the north China plain. Hydrol. Process. 17, 2011–2031 (2003).

    ADS  Google Scholar 

  • 55.

    Wei, M. et al. An efficient soil water balance model based on hybrid numerical and statistical methods. J. Hydrol. 559, 721–735 (2018).

    Google Scholar 

  • 56.

    Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M. & Gagné, C. DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012).

    MathSciNet  Google Scholar 

  • 57.

    Beijing Water Authority. Beijing Water Resource Statistics Year Book 2005–2018 (Beijing Water Authority, 2018).

  • 58.

    Beijing Hydrology Bureau. Annual Beijing Water Monitoring Bulletins 2005–2019 (Beijing Hydrology Bureau, 2019).

  • 59.

    Dai, Y. et al. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol. 14, 869–887 (2013).

    ADS  Google Scholar 

  • 60.

    Guo, Y. Q., Zhang, X., Yu, X. & Zou, Z. The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain. Agric. Water Manag. 203, 138–150 (2018).

    Google Scholar 

  • 61.

    Gong, P. et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34, 2607–2654 (2013).

    ADS  Google Scholar 

  • 62.

    Wu, L. Digital Elevation Model (1 km Spatial Resolution) Dataset of China (National Basic Geographic Information Center. China 1km resolution digital elevation model dataset. National Tibetan Plateau Data Center, 2014).

  • 63.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Gleeson, T., Moosdorf, N., Hartmann, J. & Van Beek, L. A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).

    ADS  Google Scholar 

  • 65.

    Andreadis, K. M., Schumann, G. J. P. & Pavelsky, T. A simple global river bankfull width and depth database. Water Resour. Res. 49, 7164–7168 (2013).

    ADS  Google Scholar 

  • 66.

    Shen, Y. & Xiong, A. Validation and comparison of a new gauge‐based precipitation analysis over mainland China. Int. J. Climatol. 36, 252–265 (2016).

    CAS  Google Scholar 

  • 67.

    Meng, X., Wang, H., Shi, C., Wu, Y. & Ji, X. Establishment and evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS). Water 10, 1555 (2018).

    Google Scholar 

  • 68.

    Okamoto, K.i., Ushio, T., Iguchi, T., Takahashi, N. & Iwanami, K. The global satellite mapping of precipitation (GSMaP) project. Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05. 2005, pp. 3414-3416 https://doi.org/10.1109/IGARSS.2005.1526575 (2004).

  • 69.

    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

    ADS  Google Scholar 

  • 70.

    Berrisford, P. et al. ERA-Interim Arch., version 2, 0 (2011).

    Google Scholar 

  • 71.

    Lange, S. EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-Corrected for ISIMIP (EWEMBI), V.1.1 (GFZ Data Services, 2019).

  • 72.

    Department of Civil and Environmental Engineering at Princeton University. in Global Meteorological Forcing Dataset for Land Surface Modeling (ed. Princeton University) (Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, 2006).

  • 73.

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    ADS  Google Scholar 


  • Source: Resources - nature.com

    Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms

    Variations in foliar carbon:nitrogen and nitrogen:phosphorus ratios under global change: a meta-analysis of experimental field studies