in

A food web approach reveals the vulnerability of biocontrol services by birds and bats to landscape modification at regional scale

  • 1.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 2.

    Fischer, J. & Lindenmayer, D. Landscape modification and habitat fragmentation: a synthesis. Global Ecol. Biogepogr. 16, 265–280 (2005).

    Article 

    Google Scholar 

  • 3.

    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

    Article 
    ADS 

    Google Scholar 

  • 4.

    Boyles, J., Cryan, P., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332, 41–42 (2011).

    Article 
    ADS 

    Google Scholar 

  • 5.

    Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245 (2015).

    Article 

    Google Scholar 

  • 6.

    Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. 91, 1081–1101 (2015).

    Article 

    Google Scholar 

  • 7.

    Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).

    Article 

    Google Scholar 

  • 8.

    Alkemade, R., Burkhard, B., Crossman, N. D., Nedkov, S. & Petz, K. Quantifying ecosystem services and indicators for science, policy and practice. Ecol. Indic. 37, 161–162 (2014).

    Article 

    Google Scholar 

  • 9.

    Mandle, L. et al. Assessing ecosystem service provision under climate change to support conservation and development planning in Myanmar. PLoS ONE 12(9), 23 (2017).

    Article 

    Google Scholar 

  • 10.

    Dang, A. N., Jackson, B. M., Benavidez, R. & Tomscha, S. A. Review of ecosystem service assessments: Pathways for policy integration in Southeast Asia. Ecosyst. Serv. 49, 101266 (2021).

    Article 

    Google Scholar 

  • 11.

    Eurostats. Agriculture, Forestry and Fisheries. European Statistics. https://ec.europa.eu/eurostat (2021).

  • 12.

    Eurostats. Pests and diseases in viticulture. EIP-AGRI Focus Group. https://ec.europa.eu/eip/agriculture/ (2019).

  • 13.

    Eurostats. Pests and diseases of the olive tree. EIP-AGRI Focus Group. https://ec.europa.eu/eip/agriculture/ (2019).

  • 14.

    EPPO. EPPO Global Database. https://gd.eppo.int (2018).

  • 15.

    Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, L. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).

    Article 

    Google Scholar 

  • 16.

    Equipa Atlas. Atlas das Aves Nidificantes em Portugal (1999–2005). Instituto da Conservação da Natureza e da Biodiversidade, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar. Assírio & Alvim, Lisboa (2008).

  • 17.

    Rainho, A., Alves, P., Amorim, F. & Marques, J. T. Atlas dos morcegos: de Portugal continental. Instituto da Conservação da Natureza e das Florestas (2013).

  • 18.

    Herrera, J. M., Ploquin, E., Rodriguez-Pérez, J. & Obeso, J. R. Determining habitat suitability of a mountain bumblebee fauna: a baseline approach for testing the impact of climate change on species distribution and abundance. J. Biogeogr. 41, 700–712 (2014).

    Article 

    Google Scholar 

  • 19.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 20.

    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).

    Article 
    ADS 

    Google Scholar 

  • 21.

    Jiménez-Valverde, A., Lobo, J. M. & Hortal, J. Not as good as they seem: the importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890 (2008).

    Article 

    Google Scholar 

  • 22.

    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).

    Article 

    Google Scholar 

  • 23.

    Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).

    Article 

    Google Scholar 

  • 24.

    Karp, D. S. et al. Forest bolsters bird abundance, pest control, and coffee yield. Ecol. Lett. 16, 1339–1347 (2013).

    Article 

    Google Scholar 

  • 25.

    Maas, B., Clough, Y. & Tscharntke, T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16, 1480–1487 (2013).

    Article 

    Google Scholar 

  • 26.

    Barbaro, L. et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. J. App. Ecol. 54, 500–508 (2016).

    Article 

    Google Scholar 

  • 27.

    Paiola, A. et al. Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosystem services: a global-scale systematic review. Sci. Total Environ. 706, 135839 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 28.

    Charbonnier, Y. et al. Pest control services provided by bats in vineyard landscapes. Agric. Ecosyst. Environ. 306, 107207 (2021).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Rey, P. J. et al. Landscape-moderated biodiversity effects of ground herb cover in olive groves: implications for regional biodiversity conservation. Agr. Ecosyst. Environ. 277, 61–73 (2020).

    Article 

    Google Scholar 

  • 30.

    Morgado, R. et al. A Mediterranean silent spring? The effects of olive farming intensification on breeding bird communities. Agric. Ecosyst. Environ. 288, 106694 (2020).

    Article 

    Google Scholar 

  • 31.

    Martínez-Núñez, C. et al. Direct and indirect effects of agricultural practices, landscape complexity and climate on insectivorous birds, pest abundance and damage in olive groves. Agric. Ecosyst. Environ. 304, 107145 (2020).

    Article 

    Google Scholar 

  • 32.

    Herrera, J. M., Costa, P., Medinas, D., Marques, J. T. & Mira, A. Community composition and activity of insectivorous bats in Mediterranean olive farms. Anim. Conserv. 18, 557–566 (2015).

    Article 

    Google Scholar 

  • 33.

    Costa, A. et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Prays oleae. Agric. Ecosyst. Environ. 287, 106708 (2020).

    Article 

    Google Scholar 

  • 34.

    Puig-Montserrat, X., Mas, M., Flaquer, C., Tuneu-Corrala, C. & López-Baucells, A. Benefits of organic olive farming for the conservation of gleaning bats. Agric. Ecosyst. Environ. 313, 107361 (2021).

    Article 

    Google Scholar 

  • 35.

    Rey, P. J. Preserving frugivorous birds in agro-ecosystems: lessons from Spanish olive orchards. J. Appl. Ecol. 48, 228–237 (2011).

    Article 

    Google Scholar 

  • 36.

    Rodríguez-San Pedro, A. et al. Influence of agricultural management on bat activity and species richness in vineyards of central Chile. J. Mamm. 99, 1495–1502 (2018).

    Google Scholar 

  • 37.

    Pithon, J. A., Beaujouan, V., Daniel, H., Pain, G. & Vallet, J. Are vineyards important habitats for birds at local or landscape scales?. Basic Appl. Ecol. 17, 240–251 (2016).

    Article 

    Google Scholar 

  • 38.

    Froidevaux, J. S. P., Louboutin, B. & Jones, G. Does organic farming enhance biodiversity in Mediterranean vineyards? A case study with bats and arachnids. Agr. Ecosyst. Environ. 249, 112–122 (2017).

    Article 

    Google Scholar 

  • 39.

    Van der Biest, K. et al. Aligning biodiversity conservation and ecosystem services in spatial planning: focus on ecosystem processes. Sci. Total Environ. 712, 136350 (2020).

    Article 
    ADS 

    Google Scholar 

  • 40.

    Janzen, D. H. Latent extinction-the living dead. Encycl. Biodivers. 3, 689–699 (2001).

    Article 

    Google Scholar 

  • 41.

    Herrera, J. M. et al. Generalities of vertebrate responses to landscape composition and configuration gradients in a highly heterogeneous Mediterranean region. J. Biogeogr. 43, 1203–1214 (2016).

    Article 

    Google Scholar 

  • 42.

    Ponti, L., Gutierrez, A. P., Rutid, P. M. & Dell’Aquila, A. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc. Nat. Acad. Sci. 111, 5598–5603 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 43.

    Silva, L. P. et al. Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists. Mol. Ecol. Resour. 19, 1420–1432 (2019).

    Article 

    Google Scholar 

  • 44.

    Pejchar, L. et al. Net effects of birds in agroecosystems. Bioscience 68, 896–904 (2018).

    Google Scholar 

  • 45.

    Alberdi, A. et al. DNA metabarcoding and spatial modelling link diet diversification with distribution homogeneity in European bats. Nat. Comm. 11, 1154 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: More-sustainable concrete with machine learning

    Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula