Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
Google Scholar
Fischer, J. & Lindenmayer, D. Landscape modification and habitat fragmentation: a synthesis. Global Ecol. Biogepogr. 16, 265–280 (2005).
Google Scholar
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).
Google Scholar
Boyles, J., Cryan, P., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332, 41–42 (2011).
Google Scholar
Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245 (2015).
Google Scholar
Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. 91, 1081–1101 (2015).
Google Scholar
Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).
Google Scholar
Alkemade, R., Burkhard, B., Crossman, N. D., Nedkov, S. & Petz, K. Quantifying ecosystem services and indicators for science, policy and practice. Ecol. Indic. 37, 161–162 (2014).
Google Scholar
Mandle, L. et al. Assessing ecosystem service provision under climate change to support conservation and development planning in Myanmar. PLoS ONE 12(9), 23 (2017).
Google Scholar
Dang, A. N., Jackson, B. M., Benavidez, R. & Tomscha, S. A. Review of ecosystem service assessments: Pathways for policy integration in Southeast Asia. Ecosyst. Serv. 49, 101266 (2021).
Google Scholar
Eurostats. Agriculture, Forestry and Fisheries. European Statistics. https://ec.europa.eu/eurostat (2021).
Eurostats. Pests and diseases in viticulture. EIP-AGRI Focus Group. https://ec.europa.eu/eip/agriculture/ (2019).
Eurostats. Pests and diseases of the olive tree. EIP-AGRI Focus Group. https://ec.europa.eu/eip/agriculture/ (2019).
EPPO. EPPO Global Database. https://gd.eppo.int (2018).
Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, L. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
Google Scholar
Equipa Atlas. Atlas das Aves Nidificantes em Portugal (1999–2005). Instituto da Conservação da Natureza e da Biodiversidade, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar. Assírio & Alvim, Lisboa (2008).
Rainho, A., Alves, P., Amorim, F. & Marques, J. T. Atlas dos morcegos: de Portugal continental. Instituto da Conservação da Natureza e das Florestas (2013).
Herrera, J. M., Ploquin, E., Rodriguez-Pérez, J. & Obeso, J. R. Determining habitat suitability of a mountain bumblebee fauna: a baseline approach for testing the impact of climate change on species distribution and abundance. J. Biogeogr. 41, 700–712 (2014).
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
Google Scholar
Jiménez-Valverde, A., Lobo, J. M. & Hortal, J. Not as good as they seem: the importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890 (2008).
Google Scholar
Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).
Google Scholar
Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).
Google Scholar
Karp, D. S. et al. Forest bolsters bird abundance, pest control, and coffee yield. Ecol. Lett. 16, 1339–1347 (2013).
Google Scholar
Maas, B., Clough, Y. & Tscharntke, T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16, 1480–1487 (2013).
Google Scholar
Barbaro, L. et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. J. App. Ecol. 54, 500–508 (2016).
Google Scholar
Paiola, A. et al. Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosystem services: a global-scale systematic review. Sci. Total Environ. 706, 135839 (2020).
Google Scholar
Charbonnier, Y. et al. Pest control services provided by bats in vineyard landscapes. Agric. Ecosyst. Environ. 306, 107207 (2021).
Google Scholar
Rey, P. J. et al. Landscape-moderated biodiversity effects of ground herb cover in olive groves: implications for regional biodiversity conservation. Agr. Ecosyst. Environ. 277, 61–73 (2020).
Google Scholar
Morgado, R. et al. A Mediterranean silent spring? The effects of olive farming intensification on breeding bird communities. Agric. Ecosyst. Environ. 288, 106694 (2020).
Google Scholar
Martínez-Núñez, C. et al. Direct and indirect effects of agricultural practices, landscape complexity and climate on insectivorous birds, pest abundance and damage in olive groves. Agric. Ecosyst. Environ. 304, 107145 (2020).
Google Scholar
Herrera, J. M., Costa, P., Medinas, D., Marques, J. T. & Mira, A. Community composition and activity of insectivorous bats in Mediterranean olive farms. Anim. Conserv. 18, 557–566 (2015).
Google Scholar
Costa, A. et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Prays oleae. Agric. Ecosyst. Environ. 287, 106708 (2020).
Google Scholar
Puig-Montserrat, X., Mas, M., Flaquer, C., Tuneu-Corrala, C. & López-Baucells, A. Benefits of organic olive farming for the conservation of gleaning bats. Agric. Ecosyst. Environ. 313, 107361 (2021).
Google Scholar
Rey, P. J. Preserving frugivorous birds in agro-ecosystems: lessons from Spanish olive orchards. J. Appl. Ecol. 48, 228–237 (2011).
Google Scholar
Rodríguez-San Pedro, A. et al. Influence of agricultural management on bat activity and species richness in vineyards of central Chile. J. Mamm. 99, 1495–1502 (2018).
Pithon, J. A., Beaujouan, V., Daniel, H., Pain, G. & Vallet, J. Are vineyards important habitats for birds at local or landscape scales?. Basic Appl. Ecol. 17, 240–251 (2016).
Google Scholar
Froidevaux, J. S. P., Louboutin, B. & Jones, G. Does organic farming enhance biodiversity in Mediterranean vineyards? A case study with bats and arachnids. Agr. Ecosyst. Environ. 249, 112–122 (2017).
Google Scholar
Van der Biest, K. et al. Aligning biodiversity conservation and ecosystem services in spatial planning: focus on ecosystem processes. Sci. Total Environ. 712, 136350 (2020).
Google Scholar
Janzen, D. H. Latent extinction-the living dead. Encycl. Biodivers. 3, 689–699 (2001).
Google Scholar
Herrera, J. M. et al. Generalities of vertebrate responses to landscape composition and configuration gradients in a highly heterogeneous Mediterranean region. J. Biogeogr. 43, 1203–1214 (2016).
Google Scholar
Ponti, L., Gutierrez, A. P., Rutid, P. M. & Dell’Aquila, A. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc. Nat. Acad. Sci. 111, 5598–5603 (2014).
Google Scholar
Silva, L. P. et al. Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists. Mol. Ecol. Resour. 19, 1420–1432 (2019).
Google Scholar
Pejchar, L. et al. Net effects of birds in agroecosystems. Bioscience 68, 896–904 (2018).
Alberdi, A. et al. DNA metabarcoding and spatial modelling link diet diversification with distribution homogeneity in European bats. Nat. Comm. 11, 1154 (2020).
Google Scholar
Source: Ecology - nature.com