in

A fungus infected environment does not alter the behaviour of foraging ants

  • 1.

    Jarau, S. & Hrncir, M. Food Exploitation by Social Insects: Ecological, Behavioral, and Theoretical Approaches. (CRC Press, 2009).

  • 2.

    Detrain, C. & Deneubourg, J.-L. Collective decision-making and foraging patterns in ants and honeybees. Adv. Insect Physiol. 35, 123–173 (2008) (Elsevier).

    Google Scholar 

  • 3.

    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).

    Google Scholar 

  • 4.

    Beckers, R., Deneubourg, J.-L. & Goss, S. Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. J. Insect Behav. 6, 751–759 (1993).

    Google Scholar 

  • 5.

    Detrain, C. & Prieur, J. Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources. J. Insect Physiol. 64, 74–80 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Jackson, D. E. & Châline, N. Modulation of pheromone trail strength with food quality in Pharaoh’s ant, Monomorium pharaonic. Animal Behav. 74, 463–470 (2007).

    Google Scholar 

  • 7.

    Sumpter, D. J. T. & Beekman, M. From nonlinearity to optimality: Pheromone trail foraging by ants. Anim. Behav. 66, 273–280 (2003).

    Google Scholar 

  • 8.

    Cerdá, X., Angulo, E., Boulay, R. & Lenoir, A. Individual and collective foraging decisions: A field study of worker recruitment in the gypsy ant Aphaenogaster senilis. Behav. Ecol. Sociobiol. 63, 551–562 (2009).

    Google Scholar 

  • 9.

    Detrain, C. & Deneubourg, J.-L. Scavenging by Pheidole pallidula key for understanding decision-making systems in ants. Anim. Behav. 53, 537–547 (1997).

    Google Scholar 

  • 10.

    Mailleux, A.-C., Deneubourg, J. L. & Detrain, C. How do ants assess food volume?. Anim. Behav. 59, 1061–1069 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Breed, M. D., Fewell, J. H., Moore, A. J. & Williams, K. R. Graded recruitment in a ponerine ant. Behav. Ecol. Sociobiol. 20, 407–411 (1987).

    Google Scholar 

  • 12.

    Cammaerts, M.-C. & Cammaerts, R. Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis. Behav. Proc. 5, 251–270 (1980).

    CAS 

    Google Scholar 

  • 13.

    Portha, S., Deneubourg, J.-L. & Detrain, C. Self-organized asymmetries in ant foraging: A functional response to food type and colony needs. Behav. Ecol. 13, 776–781 (2002).

    Google Scholar 

  • 14.

    Devigne, C. & Detrain, C. How does food distance influence foraging in the ant Lasius niger: The importance of home-range marking. Insect. Soc. 53, 46–55 (2006).

    Google Scholar 

  • 15.

    Fewell, J. H. Directional fidelity as a foraging constraint in the western harvester ant, Pogonomyrmex occidentalis. Oecologia 82, 45–51 (1990).

    ADS 
    PubMed 

    Google Scholar 

  • 16.

    Howard, D. F. & Tschinkel, W. R. The effect of colony size and starvation on food flow in the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 7, 293–300 (1980).

    Google Scholar 

  • 17.

    Mailleux, A.-C., Devigne, C., Deneubourg, J.-L. & Detrain, C. Impact of starvation on Lasius niger’ exploration. Ethology 116, 248–256 (2010).

    Google Scholar 

  • 18.

    Portha, S., Deneubourg, J.-L. & Detrain, C. How food type and brood influence foraging decisions of Lasius niger scouts. Anim. Behav. 68, 115–122 (2004).

    Google Scholar 

  • 19.

    Deneubourg, J.-L., Goss, S., Pasteels, J. M. & Beckers, R. Collective decision making through food recruitment. Insectes Soc. 37, 258–267 (1990).

    Google Scholar 

  • 20.

    Czaczkes, T. J., Salmane, A. K., Klampfleuthner, F. A. M. & Heinze, J. Private information alone can trigger trapping of ant colonies in local feeding optima. J. Exp. Biol. 219, 744–751 (2016).

    PubMed 

    Google Scholar 

  • 21.

    Collett, T. S. & Collett, M. Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542–552 (2002).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • 22.

    Azevedo, D. L. O., Medeiros, J. C. & Araújo, A. Adjustments in the time, distance and direction of foraging in Dinoponera quadriceps Workers. J. Insect. Behav. 27, 177–191 (2014).

    Google Scholar 

  • 23.

    Beverly, B. D., McLendon, H., Nacu, S., Holmes, S. & Gordon, D. M. How site fidelity leads to individual differences in the foraging activity of harvester ants. Behav. Ecol. 20, 633–638 (2009).

    Google Scholar 

  • 24.

    Fourcassié, V. & Traniello, J. F. A. Food searching behaviour in the ant Formica schaufussi (Hymenoptera, Formicidae): Response of naive foragers to protein and carbohydrate food. Anim. Behav. 48, 69–79 (1994).

    Google Scholar 

  • 25.

    Aron, S., Beckers, R., Deneubourg, J. L. & Pasteels, J. M. Memory and chemical communication in the orientation of two mass-recruiting ant species. Ins. Soc. 40, 369–380 (1993).

    Google Scholar 

  • 26.

    Lehue, M., Detrain, C. & Collignon, B. Nest entrances, spatial fidelity, and foraging patterns in the red ant Myrmica rubra: A field and theoretical study. Insects 11, 317 (2020).

    PubMed Central 

    Google Scholar 

  • 27.

    Bolek, S., Wittlinger, M. & Wolf, H. What counts for ants? How return behaviour and food search of Cataglyphis ants are modified by variations in food quantity and experience. J. Exp. Biol. 215, 3218–3222 (2012).

    PubMed 

    Google Scholar 

  • 28.

    Detrain, C., Natan, C. & Deneubourg, J. L. The influence of the physical environment on the self-organised foraging patterns of ants. Naturwissenschaften 88, 171–174 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Traniello, J. F. A., Fujita, M. S. & Bowen, R. V. Ant foraging behavior: Ambient temperature influences prey selection. Behav. Ecol. Sociobiol. 15, 65–68 (1984).

    Google Scholar 

  • 30.

    Nonacs, P. & Dill, L. M. Mortality risk versus food quality trade-offs in ants: Patch use over time. Ecol. Entomol. 16, 73–80 (1991).

    Google Scholar 

  • 31.

    Tanner, C. J. Individual experience-based foraging can generate community territorial structure for competing ant species. Behav. Ecol. Sociobiol. 63, 591–603 (2009).

    Google Scholar 

  • 32.

    Brown, M. J. F. & Gordon, D. M. How resources and encounters affect the distribution of foraging activity in a seed-harvesting ant. Behav. Ecol. Sociobiol. 47, 195–203 (2000).

    Google Scholar 

  • 33.

    Fourcassié, V., Schmitt, T. & Detrain, C. Impact of interference competition on exploration and food exploitation in the ant Lasius niger. Psyche J. Entomol. 2012, 1–8 (2012).

    Google Scholar 

  • 34.

    Mehdiabadi, N. & Gilbert, L. Colony-level impacts of parasitoid flies on fire ants. Proceedings of the Royal Society of London. Series B: Biological Sciences. 269, 1695–1699 (2002).

  • 35.

    Feener, D. H. Competition between ant species: Outcome controlled by parasitic flies. Science 214, 815–817 (1981).

    ADS 
    PubMed 

    Google Scholar 

  • 36.

    Schmid-Hempel, P. Parasites in Social Insects (Princeton University Press, 1998).

    Google Scholar 

  • 37.

    Cremer, S., Armitage, S. A. O. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, 693–702 (2007).

    Google Scholar 

  • 38.

    Zhukovskaya, M., Yanagawa, A. & Forschler, B. Grooming behavior as a mechanism of insect disease defense. Insects 4, 609–630 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Ortius-Lechner, D., Maile, R., Morgan, E. D. & Boomsma, J. J. Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: New compounds and their functional significance. J. Chem. Ecol. 26, 1667–1683 (2000).

    CAS 

    Google Scholar 

  • 40.

    Ballari, S., Farji-Brener, A. G. & Tadey, M. Waste management in the leaf-cutting ant Acromyrmex lobicornis: Division of labour, aggressive behaviour, and location of external refuse dumps. J. Insect Behav. 20, 87–98 (2007).

    Google Scholar 

  • 41.

    Leclerc, J.-B. & Detrain, C. Impact of colony size on survival and sanitary strategies in fungus-infected ant colonies. Behav. Ecol. Sociobiol. 72, 1–10 (2018).

  • 42.

    Pereira, H., Jossart, M. & Detrain, C. Waste management by ants: The enhancing role of larvae. Anim. Behav. 168, 187–198 (2020).

    Google Scholar 

  • 43.

    Diez, L., Urbain, L., Lejeune, P. & Detrain, C. Emergency measures: Adaptive response to pathogen intrusion in the ant nest. Behav. Proc. 116, 80–86 (2015).

    Google Scholar 

  • 44.

    López-Riquelme, G. O. & Fanjul-Moles, M. L. The funeral ways of social insects. Social strategies for corpse disposal. Trends Entomol. 9, 71–129 (2013).

  • 45.

    Heinze, J. & Walter, B. Moribund ants leave their nests to die in social isolation. Curr. Biol. 20, 249–252 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Leclerc, J.-B. & Detrain, C. Loss of attraction for social cues leads to fungal-infected Myrmica rubra ants withdrawing from the nest. Anim. Behav. 129, 133–141 (2017).

    Google Scholar 

  • 47.

    Fouks, B. & Lattorff, H. M. G. Recognition and avoidance of contaminated flowers by foraging bumblebees (Bombus terrestris). PLoS ONE 6, e26328 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Pereira, H. & Detrain, C. Pathogen avoidance and prey discrimination in ants. R. Soc. Open Sci. 7, 191705 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Pereira, H. & Detrain, C. Prophylactic avoidance of hazardous prey by the ant host Myrmica rubra. Insects 11, 444 (2020).

    PubMed Central 

    Google Scholar 

  • 50.

    Tranter, C., LeFevre, L., Evison, S. E. F. & Hughes, W. O. H. Threat detection: Contextual recognition and response to parasites by ants. ISBE 26, 396–405 (2015).

    Google Scholar 

  • 51.

    Marikovsky, P. I. On some features of behavior of the ants Formica rufa L. infected with fungous disease. Insectes Soc. 9, 173–179 (1962).

    Google Scholar 

  • 52.

    Lehue, M., Detrain, C. & Collignon, B. Nest entrances, spatial fidelity, and foraging patterns in the red ant Myrmica rubra: A field and theoretical study. Insects 11, 317 (2020).

    PubMed Central 

    Google Scholar 

  • 53.

    Diez, L., Deneubourg, J.-L., Hoebeke, L. & Detrain, C. Orientation in corpse-carrying ants: Memory or chemical cues?. Anim. Behav. 81, 1171–1176 (2011).

    Google Scholar 

  • 54.

    Brütsch, T., Felden, A., Reber, A. & Chapuisat, M. Ant queens (Hymenoptera: Formicidae) are attracted to fungal pathogens during the initial stage of colony founding. Myrmecol. News 20, 71–76 (2014).

    Google Scholar 

  • 55.

    Pontieri, L., Vojvodic, S., Graham, R., Pedersen, J. S. & Linksvayer, T. A. Ant colonies prefer infected over uninfected nest sites. PLoS ONE 9, e111961 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Leclerc, J.-B., Silva, J. P. & Detrain, C. Impact of soil contamination on the growth and shape of ant nests. R. Soc. Open Sci. 5, 180267 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Loreto, R. G. & Hughes, D. P. Disease dynamics in ants. Adv. Genet. 94, 287–306 (2016) (Elsevier).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Angelone, S. & Bidochka, M. J. Diversity and abundance of entomopathogenic fungi at ant colonies. J. Invertebr. Pathol. 156, 73–76 (2018).

    PubMed 

    Google Scholar 

  • 59.

    Evans, H. C., Groden, E. & Bischoff, J. F. New fungal pathogens of the red ant, Myrmica rubra, from the UK and implications for ant invasions in the USA. J. Funbiol. 114, 451–466 (2010).

    CAS 

    Google Scholar 

  • 60.

    Bos, N., Kankaanpää-Kukkonen, V., Freitak, D., Stucki, D. & Sundström, L. Comparison of twelve ant species and their susceptibility to fungal infection. Insects 10, 271 (2019).

    PubMed Central 

    Google Scholar 

  • 61.

    Theis, F. J., Ugelvig, L. V., Marr, C. & Cremer, S. Opposing effects of allogrooming on disease transmission in ant societies. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140108–20140108 (2015).

    Google Scholar 

  • 62.

    Okuno, M., Tsuji, K., Sato, H. & Fujisaki, K. Plasticity of grooming behavior against entomopathogenic fungus Metarhizium anisopliae in the ant Lasius japonicus. J. Ethol. 30, 23–27 (2012).

    Google Scholar 

  • 63.

    Pereira, R. M. & Stimac, J. L. Transmission of Beauveria bassiana within nests of Solenopsis invicta (Hymenoptera: Formicidae) in the laboratory. Environ. Entomol. 21, 1427–1432 (1992).

    Google Scholar 

  • 64.

    Hughes, W. O. H., Thomsen, L., Eilenberg, J. & Boomsma, J. J. Diversity of entomopathogenic fungi near leaf-cutting ant nests in a Neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J. Invertebr. Pathol. 85, 46–53 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Novak, S. & Cremer, S. Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. J. Theor. Biol. 372, 54–64 (2015).

    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • 66.

    Qiu, H., Lu, L., Shi, Q. & He, Y. Fungus exposed Solenopsis invicta ants benefit from grooming. J. Insect. Behav. 27, 678–691 (2014).

    Google Scholar 

  • 67.

    Reber, A., Purcell, J., Buechel, S. D., Buri, P. & Chapuisat, M. The expression and impact of antifungal grooming in ants. J. Evol. Biol. 24, 954–964 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Sadd, B. M. & Schmid-Hempel, P. Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr. Biol. 16, 1206–1210 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Traniello, J. F. A., Rosengaus, R. B. & Savoie, K. The development of immunity in a social insect: Evidence for the group facilitation of disease resistance. Proc. Natl. Acad. Sci. 99, 6838–6842 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Konrad, M. et al. Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLoS Biol. 10, e1001300 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Ugelvig, L. V. & Cremer, S. Social prophylaxis: Group interaction promotes collective immunity in ant colonies. Curr. Biol. 17, 1967–1971 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Bordoni, A. et al. No evidence of queen immunisation despite transgenerational immunisation in Crematogaster scutellaris ants. J. Insect Physiol. 120, 103998 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Reber, A. & Chapuisat, M. No evidence for immune priming in ants exposed to a fungal pathogen. PLoS ONE 7, e35372 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Groden, E., Drummond, F. A., Garnas, J. & Franceour, A. Distribution of an invasive ant, Myrmica rubra (Hymenoptera: Formicidae), Maine. J. Econ. Entomol. 98, 1774–1784 (2005).

    PubMed 

    Google Scholar 

  • 75.

    Radchenko, A. & Elmes, G. W. Myrmica Ants (Hymenoptera: Formicidae) of the Old World (Natura optima dux Foundation, 2010).

    Google Scholar 

  • 76.

    Hänel, H. The life cycle of the insect pathogenic fungus Metarhizium anisopliae in the termite Nasutitermes exitiosus. Mycopathologia 80, 137–145 (1982).

    Google Scholar 

  • 77.

    Leclerc, J.-B. & Detrain, C. Ants detect but do not discriminate diseased workers within their nest. Sci. Nat. 103, 1–12 (2016).

  • 78.

    Lacey, L. A. Manual of Techniques in Invertebrate Pathology (Academic Press imprint of Elsevier Science, 2012).

    Google Scholar 

  • 79.

    R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • 80.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    MATH 

    Google Scholar 

  • 81.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

    MATH 

    Google Scholar 

  • 82.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • 83.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Soft. 82, 1–26. https://doi.org/10.18637/JSS.V082.I13 (2017).

  • 84.

    Lenth, R. Emmeans: Estimated marginal means, aka least-squares means. R-package version 1.4.8. https://CRAN.R-project.org/package=emmeans (2020).

  • 85.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • 86.

    Therneau, T. A Package for Survival Analysis in R. R-package version 3.2-3. https://CRAN.R-project.org/package=survival (2020)


  • Source: Ecology - nature.com

    Rbec: a tool for analysis of amplicon sequencing data from synthetic microbial communities

    “Vigilant inclusion” central to combating climate change