in

A global horizon scan of the future impacts of robotics and autonomous systems on urban ecosystems

  • 1.

    Schwab, K. The Fourth Industrial Revolution (Penguin, 2017).

  • 2.

    Marvin, S., White, A., Kovacic, M., Lockhart, A. & Macrorie, R. Urban Robotics and Automation: Critical Challenges, International Experiments and Transferable Lessons for the UK UK-RAS White Paper (UK-RAS Network, 2018).

  • 3.

    Salvini, P. Urban robotics: towards responsible innovations for our cities. Rob. Autom. Syst. 100, 278–286 (2018).

    Article  Google Scholar 

  • 4.

    Vougioukas, S. G. Agricultural robotics. Annu. Rev. Control Robot. Auton. Syst. 2, 365–392 (2019).

    Article  Google Scholar 

  • 5.

    Allan, B. M. et al. Futurecasting ecological research: the rise of technoecology. Ecosphere 9, e02163 (2018).

    Article  Google Scholar 

  • 6.

    Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).

    Article  Google Scholar 

  • 7.

    Dash, J. P., Watt, M. S., Paul, T. S. H., Morgenroth, J. & Hartley, R. Taking a closer look at invasive alien plant research: a review of the current state, opportunities, and future directions for UAVs. Methods Ecol. Evol. 10, 2020–2033 (2019).

    Article  Google Scholar 

  • 8.

    Global Autonomous Robot Market—Industry Trends and Forecast to 2026 (Data Bridge Market Research, 2019).

  • 9.

    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

    PubMed  Article  CAS  Google Scholar 

  • 11.

    Du Toit, M. J. et al. Urban green infrastructure and ecosystem services in sub-Saharan Africa. Landsc. Urban Plan. 180, 249–261 (2018).

    Article  Google Scholar 

  • 12.

    Nitoslawski, S. A., Galle, N. J., van den Bosch, C. K. & Steenberg, J. W. N. Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustain. Cities Soc. 51, 101770 (2019).

    Article  Google Scholar 

  • 13.

    Gulsrud, N. M. et al. ‘Rage against the machine’? The opportunities and risks concerning the automation of urban green infrastructure. Landsc. Urban Plan. 180, 85–92 (2018).

    Article  Google Scholar 

  • 14.

    Bibri, S. E. & Krogstie, J. Smart sustainable cities of the future: an extensive interdisciplinary literature review. Sustain. Cities Soc. 31, 183–212 (2017).

    Article  Google Scholar 

  • 15.

    Colding, J. & Barthel, S. An urban ecology critique on the “Smart City” model. J. Clean. Prod. 164, 95–101 (2017).

    Article  Google Scholar 

  • 16.

    Martin, C. J., Evans, J. & Karvonen, A. Smart and sustainable? Five tensions in the visions and practices of the smart-sustainable city in Europe and North America. Technol. Forecast. Soc. Change 133, 269–278 (2018).

    Article  Google Scholar 

  • 17.

    Cantrell, B., Martin, L. J. & Ellis, E. C. Designing autonomy: opportunities for new wildness in the Anthropocene. Trends Ecol. Evol. 32, 156–166 (2017).

    PubMed  Article  Google Scholar 

  • 18.

    Luvisi, A. & Lorenzini, G. RFID-plants in the smart city: applications and outlook for urban green management. Urban For. Urban Green. 13, 630–637 (2014).

    Article  Google Scholar 

  • 19.

    Kahila-Tani, M., Broberg, A., Kyttä, M. & Tyger, T. Let the citizens map—public participation GIS as a planning support system in the Helsinki master plan process. Plan. Pract. Res. 31, 195–214 (2016).

    Article  Google Scholar 

  • 20.

    McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).

    Article  Google Scholar 

  • 21.

    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).

    Article  Google Scholar 

  • 22.

    Gomez-Baggethun, E. & Barton, D. N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 86, 235–245 (2013).

    Article  Google Scholar 

  • 23.

    Sutherland, W. J. et al. A horizon scan of emerging issues for global conservation in 2019. Trends Ecol. Evol. 34, 83–94 (2019).

    PubMed  Article  Google Scholar 

  • 24.

    Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).

    Article  Google Scholar 

  • 25.

    Stanley, M. C. et al. Emerging threats in urban ecosystems: a horizon scanning exercise. Front. Ecol. Environ. 13, 553–560 (2015).

    Article  Google Scholar 

  • 26.

    Sandbrook, C., Fisher, J. A., Holmes, G., Luque-Lora, R. & Keane, A. The global conservation movement is diverse but not divided. Nat. Sustain. 2, 316–323 (2019).

    Article  Google Scholar 

  • 27.

    MacGregor-Fors, I. & Escobar-Ibáñez, J. F. Avian Ecology in Latin American Cityscapes (Springer, 2017).

  • 28.

    Dobbs, C. et al. Urban ecosystem services in Latin America: mismatch between global concepts and regional realities? Urban Ecosyst. 22, 173–187 (2019).

    Article  Google Scholar 

  • 29.

    Cunningham, M. L., Regan, M. A., Horberry, T., Weeratunga, K. & Dixit, V. Public opinion about automated vehicles in Australia: results from a large-scale national survey. Transp. Res. Part A Policy Pract. 129, 1–18 (2019).

    Article  Google Scholar 

  • 30.

    Kaur, K. & Rampersad, G. Trust in driverless cars: investigating key factors influencing the adoption of driverless cars. J. Eng. Technol. Manag. 48, 87–96 (2018).

    Article  Google Scholar 

  • 31.

    Artmann, M., Kohler, M., Meinel, G., Gan, J. & Ioja, I. C. How smart growth and green infrastructure can mutually support each other—a conceptual framework for compact and green cities. Ecol. Indic. 96, 10–22 (2019).

    Article  Google Scholar 

  • 32.

    Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B Biol. Sci. 281, 20133330 (2014).

    Article  Google Scholar 

  • 33.

    Haaland, C. & van den Bosch, C. K. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green. 14, 760–771 (2015).

    Article  Google Scholar 

  • 34.

    Papa, E. & Ferreira, A. Sustainable accessibility and the implementation of automated vehicles: identifying critical decisions. Urban Sci. 2, 5 (2018).

    Article  Google Scholar 

  • 35.

    Stead, D. & Vaddadi, B. Automated vehicles and how they may affect urban form: a review of recent scenario studies. Cities 92, 125–133 (2019).

    Article  Google Scholar 

  • 36.

    Duarte, F. & Ratti, C.The impact of autonomous vehicles on cities: a review;. J. Urban Technol. 25, 3–18 (2018).

    Article  Google Scholar 

  • 37.

    Fagnant, D. J. & Kockelman, K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. A Policy Pract. 77, 167–181 (2015).

    Article  Google Scholar 

  • 38.

    Narayanan, S., Chaniotakis, E. & Antoniou, C. Shared autonomous vehicle services: a comprehensive review. Transp. Res. C Emerg. Technol. 111, 255–293 (2020).

    Article  Google Scholar 

  • 39.

    Heinrichs, D. in Autonomous Driving: Technical, Legal and Social Aspects (eds Maurer, M. et al.) 213–231 (Springer Berlin Heidelberg, 2016).

  • 40.

    Soteropoulos, A., Berger, M. & Ciari, F. Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies. Transp. Rev. 39, 29–49 (2019).

    Article  Google Scholar 

  • 41.

    Meyer, J., Becker, H., Bosch, P. M. & Axhausen, K. W. Autonomous vehicles: the next jump in accessibilities? Res. Transp. Econ. 62, 80–91 (2017).

    Article  Google Scholar 

  • 42.

    Hawkins, J. & Habib, K. N. Integrated models of land use and transportation for the autonomous vehicle revolution. Transp. Rev. 39, 66–83 (2019).

    Article  Google Scholar 

  • 43.

    Dupras, J. et al. The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 58, 61–73 (2016).

    Article  Google Scholar 

  • 44.

    Loeb, B., Kockelman, K. M. & Liu, J. Shared autonomous electric vehicle (SAEV) operations across the Austin, Texas network with charging infrastructure decisions. Transp. Res. C Emerg. Technol. 89, 222–233 (2018).

    Article  Google Scholar 

  • 45.

    Samonte, M. J. C. et al. PHYTO: An IoT Urban Gardening Mobile App (Association for Computing Machinery, 2019).

  • 46.

    Canales-Ide, F., Zubelzu, S. & Rodriguez-Sinobas, L. Irrigation systems in smart cities coping with water scarcity: the case of Valdebebas, Madrid (Spain). J. Environ. Manag. 247, 187–195 (2019).

    Article  Google Scholar 

  • 47.

    Kolokotsa, D. Smart cooling systems for the urban environment. Using renewable technologies to face the urban climate change. Sol. Energy 154, 101–111 (2017).

    Article  Google Scholar 

  • 48.

    Taufik, T. & Hasanah, R. N. Light sensing smart blinds. In 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS) 1–4 (IEEE, 2018); https://doi.org/10.1109/EECCIS.2018.8692805

  • 49.

    Kendal, D. et al. A global comparison of the climatic niches of urban and native tree populations. Glob. Ecol. Biogeogr. 27, 629–637 (2018).

    Article  Google Scholar 

  • 50.

    Wheeler, M. M. et al. Continental-scale homogenization of residential lawn plant communities. Landsc. Urban Plan. 165, 54–63 (2017).

    Article  Google Scholar 

  • 51.

    Aronson, M. F. J. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).

    Article  Google Scholar 

  • 52.

    Lam, T. L. & Xu, Y. S. Climbing strategy for a flexible tree climbing robot—treebot. IEEE Trans. Rob. 27, 1107–1117 (2011).

    Article  Google Scholar 

  • 53.

    Dallimer, M., Tang, Z. Y., Gaston, K. J. & Davies, Z. G. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol. Evol. 6, 1942–1953 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Latli, A., Michel, L. N., Lepoint, G. & Kestemont, P. River habitat homogenisation enhances trophic competition and promotes individual specialisation among young of the year fish. Freshw. Biol. 64, 520–531 (2019).

    CAS  Article  Google Scholar 

  • 55.

    Shaw, L. M., Chamberlain, D. & Evans, M. The house sparrow Passer domesticus in urban areas: reviewing a possible link between post-decline distribution and human socioeconomic status. J. Ornithol. 149, 293–299 (2008).

    Article  Google Scholar 

  • 56.

    Ferguson, M., Roberts, H. E., McEachan, R. R. C. & Dallimer, M. Contrasting distributions of urban green infrastructure across social and ethno-racial groups. Landsc. Urban Plan. 175, 136–148 (2018).

    Article  Google Scholar 

  • 57.

    Leong, M., Dunn, R. R. & Trautwein, M. D.Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Nesbitt, L., Meitner, M. J., Girling, C., Sheppard, S. R. J. & Lu, Y. H. Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landsc. Urban Plan. 181, 51–79 (2019).

    Article  Google Scholar 

  • 59.

    Hajat, A., Hsia, C. & O’Neill, M. S. Socioeconomic disparities and air pollution exposure: a global review. Curr. Environ. Health Rep. 2, 440–450 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Pope, R., Wu, J. & Boone, C. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the Phoenix metropolitan region of USA. Environ. Manag. 58, 753–766 (2016).

    Article  Google Scholar 

  • 61.

    Jenerette, G. D. et al. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 22, 353–365 (2007).

    Article  Google Scholar 

  • 62.

    Frumkin, H. et al. Nature contact and human health: a research agenda. Environ. Health Perspect. 125, 075001 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Rafael, S. et al. Autonomous vehicles opportunities for cities air quality. Sci. Total Environ. 712, 136546 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 64.

    Stern, R. E. et al. Quantifying air quality benefits resulting from few autonomous vehicles stabilizing traffic. Transp. Res. D Transp. Environ. 67, 351–365 (2019).

    Article  Google Scholar 

  • 65.

    Twohig-Bennett, C. & Jones, A. The health benefits of the great outdoors: a systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 166, 628–637 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Thompson Coon, J. et al. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 45, 1761–1772 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).

    Article  Google Scholar 

  • 68.

    Parsons, R., Tassinary, L. G., Ulrich, R. S., Hebl, M. R. & Grossman-Alexander, M. The view from the road: implications for stress recovery and immunization. J. Environ. Psychol. 18, 113–140 (1998).

    Article  Google Scholar 

  • 69.

    Hahmann, S., Miksch, J., Resch, B., Lauer, J. & Zipf, A. Routing through open spaces—a performance comparison of algorithms. Geo. Spat. Inf. Sci. 21, 247–256 (2018).

    Article  Google Scholar 

  • 70.

    Harper, C. D., Hendrickson, C. T., Mangones, S. & Samaras, C. Estimating potential increases in travel with autonomous vehicles for the non-driving, elderly and people with travel-restrictive medical conditions. Transp. Res. C Emerg. Technol. 72, 1–9 (2016).

    Article  Google Scholar 

  • 71.

    Wei, J. W., Lee, B. & Wen, L. B.Citizen science and the urban ecology of birds and butterflies—a systematic review. PLoS ONE 11, e0156425 (2016).

    Article  CAS  Google Scholar 

  • 72.

    Schuttler, S. G., Sorensen, A. E., Jordan, R. C., Cooper, C. & Shwartz, A.Bridging the nature gap: can citizen science reverse the extinction of experience? Front. Ecol. Environ. 16, 405–411 (2018).

    Article  Google Scholar 

  • 73.

    Jepson, P. & Ladle, R. J. Nature apps: waiting for the revolution. Ambio 44, 827–832 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Botello, B., Buehler, R., Hankey, S., Mondschein, A. & Jiang, Z. Planning for walking and cycling in an autonomous-vehicle future. Transp. Res. Interdiscip. Perspect. 1, 100012 (2019).

    Google Scholar 

  • 75.

    Gulsrud, N. M. in Routledge Research Companion to Landscape Architecture (eds Braae, E. & Steiner, H.) 103–111 (Routledge, 2018).

  • 76.

    Potts, S. G., Neumann, P., Vaissière, B. & Vereecken, N. J. Robotic bees for crop pollination: why drones cannot replace biodiversity. Sci. Total Environ. 642, 665–667 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 77.

    Kahn, P. H., Severson, R. L. & Ruckert, J. H. The human relation with nature and technological nature. Curr. Dir. Psychol. Sci. 18, 37–42 (2009).

    Article  Google Scholar 

  • 78.

    Mackay, C. M. L. & Schmitt, M. T. Do people who feel connected to nature do more to protect it? A meta-analysis. J. Environ. Psychol. 65, 101323 (2019).

    Article  Google Scholar 

  • 79.

    Truong, M. X. A. & Clayton, S. Technologically transformed experiences of nature: a challenge for environmental conservation? Biol. Conserv. 244, 108532 (2020).

    Article  Google Scholar 

  • 80.

    Alonzo, M., McFadden, J. P., Nowak, D. J. & Roberts, D. A. Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban For. Urban Green. 17, 135–147 (2016).

    Article  Google Scholar 

  • 81.

    Fairbrass, A. J. et al. CityNet—deep learning tools for urban ecoacoustic assessment. Methods Ecol. Evol. 10, 186–197 (2019).

    Article  Google Scholar 

  • 82.

    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).

    PubMed  Article  Google Scholar 

  • 83.

    Ampatzidis, Y., De Bellis, L. & Luvisi, A.iPathology: robotic applications and management of plants and plant diseases. Sustainability 9, 1010 (2017).

    Article  Google Scholar 

  • 84.

    Nasi, R. et al. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 30, 72–83 (2018).

    Article  Google Scholar 

  • 85.

    Smith, R. J., Verissimo, D., Isaac, N. J. B. & Jones, K. E. Identifying Cinderella species: uncovering mammals with conservation flagship appeal. Conserv. Lett. 5, 205–212 (2012).

    Article  Google Scholar 

  • 86.

    Cooper, N., Brady, E., Steen, H. & Bryce, R. Aesthetic and spiritual values of ecosystems: recognising the ontological and axiological plurality of cultural ecosystem ‘services’. Ecosyst. Serv. 21, 218–229 (2016).

    Article  Google Scholar 

  • 87.

    Colding, J., Colding, M. & Barthel, S.The smart city model: a new panacea for urban sustainability or unmanageable complexity? Environ. Plan. B Urban Anal. City Sci. 47, 179–187 (2020).

    Article  Google Scholar 

  • 88.

    Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions 19, 3489–3503 (2017).

    Article  Google Scholar 

  • 89.

    Jurdak, R. et al. Autonomous surveillance for biosecurity. Trends Biotechnol. 33, 201–207 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 90.

    Martinez, B. et al. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions 22, 75–100 (2020).

    Article  Google Scholar 

  • 91.

    Mulero-Pazmany, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: a systematic review. PLoS ONE 12, e0178448 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 92.

    Rush, G. P., Clarke, L. E., Stone, M. & Wood, M. J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 8, 12322–12334 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 93.

    Ditmer, M. A. et al. Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Curr. Biol. 25, 2278–2283 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 94.

    Zvereva, E. L. & Kozlov, M. V. Responses of terrestrial arthropods to air pollution: a meta-analysis. Environ. Sci. Pollut. Res. 17, 297–311 (2010).

    CAS  Article  Google Scholar 

  • 95.

    Zvereva, E. L., Toivonen, E. & Kozlov, M. V. Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Glob. Ecol. Biogeogr. 17, 305–319 (2008).

    Article  Google Scholar 

  • 96.

    Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).

    Article  Google Scholar 

  • 97.

    Irwin, A. The dark side of light: how artificial lighting is harming the natural world. Nature 553, 268–270 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 98.

    Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 99.

    Cabrera-Cruz, S. A., Smolinsky, J. A. & Buler, J. J. Light pollution is greatest within migration passage areas for nocturnally-migrating birds around the world. Sci. Rep. 8, 3261 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 100.

    Cashikar, A., Li, J. & Biswas, P. Particulate matter sensors mounted on a robot for environmental aerosol measurements. J. Environ. Eng. 145, 04019057 (2019).

    CAS  Article  Google Scholar 

  • 101.

    Shah, M., Shah, S. K. & Shah, M. Autonomous robotic vehicle for oil spills cleaning with nano particles. In 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 1–6 (IEEE, 2018).

  • 102.

    Alfeo, A. L. et al. Urban swarms: a new approach for autonomous waste management. Preprint at arXiv https://doi.org/10.1109/ICRA.2019.8794020 (2019).

  • 103.

    Perkins, D. N., Brune Drisse, M.-N., Nxele, T. & Sly, P. D. E-waste: a global hazard. Ann. Glob. Health 80, 286–295 (2014).

    PubMed  Article  Google Scholar 

  • 104.

    Boyer, T. & Polasky, S. J.Valuing urban wetlands: a review of non-market valuation studies. Wetlands 24, 744–755 (2004).

    Article  Google Scholar 

  • 105.

    Rouse, M. The worldwide urban water and wastewater infrastructure challenge. Int. J. Water Resour. Dev. 30, 20–27 (2014).

    Article  Google Scholar 

  • 106.

    Yuan, Z. G. et al. Sweating the assets—the role of instrumentation, control and automation in urban water systems. Water Res. 155, 381–402 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 107.

    Hall, S., Price, R. & Mandhani, N. Use of autonomous vehicles for drinking water monitoring and management in an urban environment. In Proc. ASAE Annual International Meeting 7855–7862 (American Society of Association Executives, 2004).

  • 108.

    Troutman, S. C., Love, N. G. & Kerkez, B. Balancing water quality and flows in combined sewer systems using real-time control. Environ. Sci. Water Res. Technol. 6, 1357–1369 (2020).

    CAS  Article  Google Scholar 

  • 109.

    McDonald, W. Drones in urban stormwater management: a review and future perspectives. Urban Water J. 16, 505–518 (2019).

    CAS  Article  Google Scholar 

  • 110.

    Kerkez, B. et al. Smarter stormwater systems. Environ. Sci. Technol. 50, 7267–7273 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 111.

    Chen, Y. & Han, D. Water quality monitoring in smart city: a pilot project. Autom. Constr. 89, 307–316 (2018).

    Article  Google Scholar 

  • 112.

    Booth, D. B., Roy, A. H., Smith, B. & Capps, K. A. Global perspectives on the urban stream syndrome. Freshw. Sci. 35, 412–420 (2016).

    Article  Google Scholar 

  • 113.

    Prudencio, L. & Null, S. E.Stormwater management and ecosystem services: a review. Environ. Res. Lett. 13, 033002 (2018).

    Article  Google Scholar 

  • 114.

    Sadler, G. R., Lee, H.-C., Lim, R. S.-H. & Fullerton, J. Research article: recruitment of hard-to-reach population subgroups via adaptations of the snowball sampling strategy. Nurs. Health Sci. 12, 369–374 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 115.

    Mahler, A. G. Global South (Oxford Univ. Press, 2017); https://doi.org/10.1093/OBO/9780190221911-0055

  • 116.

    Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).

    PubMed  Article  Google Scholar 

  • 117.

    Danziger, S., Levav, J. & Avnaim-Pesso, L. Extraneous factors in judicial decisions. Proc. Natl Acad. Sci. USA 108, 6889–6892 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 118.

    Bryer, J. & Speerschneider, K. likert: Analysis and visualization likert items https://cran.r-project.org/web/packages/likert/likert.pdf (2016).

  • 119.

    R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 120.

    Goddard, M. A. & Dallimer, M. University of Leeds Data Repository (Univ. Leeds, 2020); https://doi.org/10.5518/912

  • 121.

    Future Foresight (Dubai Future Foundation, 2018); https://www.dubaifuture.gov.ae/publications/


  • Source: Ecology - nature.com

    Aerosols from pollution, desert storms, and forest fires may intensify thunderstorms

    Portable device can quickly detect plant stress