in

A global model to forecast coastal hardening and mitigate associated socioecological risks

  • 1.

    Dugan, J., Airoldi, L., Chapman, G. & Walker, S. in Treatise on Estuarine and Coastal Science Vol. 8 (eds Wolanski, E. & McLusky, D.) 17–41 (2011).

  • 2.

    Bugnot, A. B. et al. Current and projected global extent of marine built structures. Nat. Sustain. 4, 33–41 (2020).

    Article 

    Google Scholar 

  • 3.

    Connell, S. D. Floating pontoons create novel habitats for subtidal epibiota. J. Exp. Mar. Biol. Ecol. 247, 183–194 (2000).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Glasby, T., Connell, S., Holloway, M. & Hewitt, C. Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Mar. Biol. 151, 887–895 (2007).

    Article 

    Google Scholar 

  • 5.

    Heery, E. C. et al. Identifying the consequences of ocean sprawl for sedimentary habitats. J. Exp. Mar. Biol. Ecol. 492, 31–48 (2017).

    Article 

    Google Scholar 

  • 6.

    Scherner, F. et al. Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar. Pollut. Bull. 76, 106–115 (2013).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Malerba, M. E., White, C. R. & Marshall, D. J. The outsized trophic footprint of marine urbanization. Front. Ecol. Environ. 17, 400–406 (2019).

    Article 

    Google Scholar 

  • 8.

    Dafforn, K. A., Glasby, T. M. & Johnston, E. L. Comparing the invasibility of experimental “reefs” with field observations of natural reefs and artificial structures. PLoS ONE 7, e38124 (2012).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Airoldi, L., Turon, X., Perkol-Finkel, S. & Rius, M. Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Divers. Distrib. 21, 755–768 (2015).

    Article 

    Google Scholar 

  • 10.

    Hayes, K. R., Inglis, G. J. & Barry, S. C. The assessment and management of marine pest risks posed by shipping: the Australian and New Zealand experience. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00489 (2019).

  • 11.

    Floerl, O., Inglis, G., Dey, K. L. & Smith, A. The importance of transport hubs in stepping-stone invasions. J. Appl. Ecol. 46, 37–45 (2009).

    Article 

    Google Scholar 

  • 12.

    Kaluza, P., Kolzsch, A., Gastner, M. T. & Blasius, B. The complex network of global cargo ship movements. J. R. Soc. Interface 7, 1093–1103 (2010).

    Article 

    Google Scholar 

  • 13.

    Aguirre, D. et al. Loved to pieces: toward the sustainable management of the Waitematā Harbour and Hauraki Gulf. Reg. Stud. Mar. Sci. 8, 220–233 (2016).

    Article 

    Google Scholar 

  • 14.

    Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).

    Article 

    Google Scholar 

  • 15.

    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Lombard, A. T. et al. Practical approaches and advances in spatial tools to achieve multi-objective marine spatial planning. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00166 (2019).

  • 19.

    Pelling, M. & Blackburn, S. Megacities and the Coast: Risk, Resilience and Transformation (Routledge, 2013).

  • 20.

    Sutton-Grier, A. E., Wowk, K. & Bamford, H. Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 51, 137–148 (2015).

    Article 

    Google Scholar 

  • 21.

    Keller, R., Drake, J., Drew, M. & Lodge, D. Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Divers. Distrib. 17, 93–102 (2011).

    Article 

    Google Scholar 

  • 22.

    How Can We Meet Increasing Demand for Ports in the Upper North Island? A Report for the Upper North Island Strategic Alliance (PricewaterhouseCoopers, 2012).

  • 23.

    Ernst & Young Port Future Study. A Report Prepared for Auckland Council (Auckland Council, 2016).

  • 24.

    NZIER Bigger Ships—Past, Present and Future Implications for New Zealand Supply Chains (New Zealand Economic Research Institute, 2017).

  • 25.

    Hino, M., Belanger, S. T., Field, C. B., Davies, A. R. & Mach, K. J. High-tide flooding disrupts local economic activity. Sci. Adv. 5, eaau2736 (2019).

    Article 

    Google Scholar 

  • 26.

    United Nations Review of Maritime Transport 109 (United Nations Conference on Trade and Development, 2019).

  • 27.

    Ferrario, F., Iveša, L., Jaklin, A., Perkol-Finkel, S. & Airoldi, L. The overlooked role of biotic factors in controlling the ecological performance of artificial marine habitats. J. Appl. Ecol. 53, 16–24 (2016).

    Article 

    Google Scholar 

  • 28.

    Firth, L. et al. Ocean sprawl: challenges and opportunities for biodiversity management in a changing world. Oceanogr. Mar. Biol. 54, 189–262 (2016).

    Google Scholar 

  • 29.

    Mayer-Pinto, M. et al. Functional and structural responses to marine urbanisation. Environ. Res. Lett. 13, 014009 (2018).

    Article 

    Google Scholar 

  • 30.

    Bannister, J., Sievers, M., Bush, F. & Bloecher, N. Biofouling in marine aquaculture: a review of recent research and developments. Biofouling 35, 631–648 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Colautti, R. I., Bailey, S. A., van Overdijk, C. D. A., Amundsen, K. & MacIsaac, H. J. Characterised and projected costs of nonindigenous species in Canada. Biol. Invasions 8, 45–59 (2006).

    Article 

    Google Scholar 

  • 32.

    Mazur, K., Bath, A., Curtotti, R. & Summerson, R. An Assessment of the Non-market Value of Reducing the Risk of Marine Pest Incursions in Australia’s Waters (Australian Bureau of Agricultural and Resource Economics and Sciences, 2018).

  • 33.

    Hatami, R. et al. Improving New Zealand’s Marine Biosecurity Surveillance Programme Biosecurity New Zealand Technical Paper No. 2021/01 (Ministry for Primary Industries, 2021).

  • 34.

    Sardain, A., Sardain, E. & Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2, 274–282 (2019).

    Article 

    Google Scholar 

  • 35.

    Monios, J., Bergqvist, R. & Woxenius, J. Port-centric cities: the role of freight distribution in defining the port-city relationship. J. Transp. Geogr. 66, 53–64 (2018).

    Article 

    Google Scholar 

  • 36.

    The Ocean Economy in 2030 (Organisation for Economic Co-operation and Development, 2016).

  • 37.

    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Dafforn, K. A. et al. Marine urbanization: an ecological framework for designing multifunctional artificial structures. Front. Ecol. Environ. 13, 82–90 (2015).

    Article 

    Google Scholar 

  • 39.

    Diggon, S. et al. The marine plan partnership: Indigenous community-based marine spatial planning. Mar. Policy https://doi.org/10.1016/j.marpol.2019.04.014 (2019).

  • 40.

    Noble, M. M., Harasti, D., Pittock, J. & Doran, B. Understanding the spatial diversity of social uses, dynamics, and conflicts in marine spatial planning. J. Environ. Manag. 246, 929–940 (2019).

    Article 

    Google Scholar 

  • 41.

    Abhinav, K. A. et al. Offshore multi-purpose platforms for a blue growth: a technological, environmental and socio-economic review. Sci. Total Environ. 734, 138256 (2020).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Jacob, C., Buffard, A., Pioch, S. & Thorin, S. Marine ecosystem restoration and biodiversity offset. Ecol. Eng. 120, 585–594 (2018).

    Article 

    Google Scholar 

  • 43.

    Hopkins, G. A. et al. Continuous bubble streams for controlling marine biofouling on static artificial structures. PeerJ 9, e11323 (2021).

    Article 

    Google Scholar 

  • 44.

    Vucko, M. J. et al. Cold spray metal embedment: an innovative antifouling technology. Biofouling 28, 239–248 (2012).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Atalah, J., Newcombe, E. M., Hopkins, G. A. & Forrest, B. M. Potential biocontrol agents for biofouling on artificial structures. Biofouling 30, 999–1010 (2014).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Airoldi, L. et al. Emerging solutions to return nature to the urban ocean. Ann. Rev. Mar. Sci. 13, 445–477 (2021).

    Article 

    Google Scholar 

  • 47.

    Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Indic. 85, 1044–1057 (2018).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Zaiko, A., Pochon, X., Garcia-Vazquez, E., Olenin, S. & Wood, S. A. Advantages and limitations of environmental DNA/RNA tools for marine biosecurity: management and surveillance of non-indigenous species. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00322 (2018).

  • 49.

    Cristescu, M. E. Can environmental RNA revolutionize biodiversity science? Trends Ecol. Evol. 34, 694–697 (2019).

    Article 

    Google Scholar 

  • 50.

    Chakravarthy, K., Charters, F. & Cochrane, T. The impact of urbanisation on New Zealand freshwater quality. Policy Q. 15, 17–21 (2019).

    Article 

    Google Scholar 

  • 51.

    Gittman, R. K. et al. Engineering away our natural defenses: an analysis of shoreline hardening in the US. Front. Ecol. Environ. 13, 301–307 (2015).

    Article 

    Google Scholar 

  • 52.

    Hume, T. M., Snelder, T., Weatherhead, M. & Liefting, R. A controlling factor approach to estuary classification. Ocean Coast. Manag. 50, 905–929 (2007).

    Article 

    Google Scholar 

  • 53.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • 54.

    Prasad, A. M., Iverson, L. R. & Liaw, A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9, 181–199 (2006).

    Article 

    Google Scholar 

  • 55.

    Olden, J. D., Lawler, J. J. & Poff, N. L. Machine learning methods without tears: a primer for ecologists. Q. Rev. Biol. 83, 171–193 (2008).

    Article 

    Google Scholar 

  • 56.

    Kursa, M. B. & Rudnicki, W. R. Feature selection with the boruta package. J. Stat. Softw. 36, 1–13 (2010).

    Article 

    Google Scholar 

  • 57.

    Zuur, A. F., Leno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • 58.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 59.

    Kuhn, M. et al. caret: Classification and Regression Training (CRAN, 2019); https://CRAN.R-project.org/package=caret

  • 60.

    Ministry for the Environment & Stats NZ. New Zealand’s Environmental Reporting Series: Environment Aotearoa 2019 (Ministry for the Environment, 2019).


  • Source: Ecology - nature.com

    How diet affects tumors

    Coupling power and hydrogen sector pathways to benefit decarbonization