in

A global-scale expert assessment of drivers and risks associated with pollinator decline

  • 1.

    The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (IPBES, 2016).

  • 2.

    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1799 (2014).

  • 4.

    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl Acad. Sci. USA 113, 140–145 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B 287, 20200922 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Aizen, M. A. et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25, 3516–3527 (2019).

    Article 

    Google Scholar 

  • 8.

    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agric. Ecosyst. Environ. 216, 44–50 (2016).

    Article 

    Google Scholar 

  • 10.

    Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. R. Landscape impacts on pollinator communities in temperate systems: evidence and knowledge gaps. Funct. Ecol. 31, 26–37 (2017).

    Article 

    Google Scholar 

  • 11.

    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Tonietto Rebecca, K. & Larkin Daniel, J. Habitat restoration benefits wild bees: a meta‐analysis. J. Appl. Ecol. 55, 582–590 (2017).

    Article 

    Google Scholar 

  • 15.

    Wintermantel, D., Odoux, J.-F., Chadœuf, J. & Bretagnolle, V. Organic farming positively affects honeybee colonies in a flower-poor period in agricultural landscapes. J. Appl. Ecol. 56, 1960–1969 (2019).

    Google Scholar 

  • 16.

    Dicks, L. V. et al. Ten policies for pollinators. Science 354, 975–976 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    FAO’s Global Action on Pollination Services for Sustainable Agriculture: National Initiatives (FAO, 2020); http://www.fao.org/pollination/major-initiatives/national-initiatives/en/

  • 18.

    Conservation and Sustainable Use of Pollinators CBD/COP/DEC/14/6 30 November 2018 (Convention on Biological Diversity, 2018).

  • 19.

    Teichroew, J. L. et al. Is China’s unparalleled and understudied bee diversity at risk? Biol. Conserv. 210, 19–28 (2017).

    Article 

    Google Scholar 

  • 20.

    Breeze, T. D., Gallai, N., Garibaldi, L. A. & Li, X. S. Economic measures of pollination services: shortcomings and future directions. TREE 31, 927–939 (2016).

    PubMed 

    Google Scholar 

  • 21.

    Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  • 22.

    Hall, D. M. & Steiner, R. Insect pollinator conservation policy innovations at subnational levels: lessons for lawmakers. Environ. Sci. Policy 93, 118–128 (2019).

    Article 

    Google Scholar 

  • 23.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).

    Article 

    Google Scholar 

  • 25.

    Kovács-Hostyánszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Basu, P. et al. Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecol. Evol. 6, 6983–6992 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Jayne, T. S., Snapp, S., Place, F. & Sitko, N. Sustainable agricultural intensification in an era of rural transformation in Africa. Glob. Food Security 20, 105–113 (2019).

    Article 

    Google Scholar 

  • 30.

    Mitchell, E. A. D. et al. A worldwide survey of neonicotinoids in honey. Science 358, 109–111 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Rundlof, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37, 616–626 (2012).

    Article 

    Google Scholar 

  • 34.

    Neonicotinoid Insecticides: Use and Effects in African Agriculture: a Review and Recommendations to Policymakers (NASAC, 2019); https://nasaconline.org/en/index.php/2020/05/26/neonicotinoid-insecticides-use-and-effects-in-african-agriculture-a-review-and-recommendations-to-policy-makers/

  • 35.

    Herrando, S. et al. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 9, 5680 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Brookes, G. & Barfoot, P. GM Crops: Global Socio-economic and Environmental Impacts 1996-2018 (PG Economics Ltd, 2020); https://pgeconomics.co.uk/pdf/globalimpactfinalreportJuly2020.pdf

  • 37.

    Farina, W. M., Balbuena, M. S., Herbert, L. T., Gonalons, C. M. & Vazquez, D. E. Effects of the herbicide glyphosate on honey bee sensory and cognitive abilities: individual impairments with implications for the hive. Insects 10, 354 (2019).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).

    Article 

    Google Scholar 

  • 39.

    Regan, E. C. et al. Global trends in the status of bird and mammal pollinators. Conserv. Lett. 8, 397–403 (2015).

    Article 

    Google Scholar 

  • 40.

    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Samnegård, U., Hambäck, P. A., Lemessa, D., Nemomissa, S. & Hylander, K. A heterogeneous landscape does not guarantee high crop pollination. Proc. Biol. Sci. 283, 20161472 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Groeneveld, J. H., Tscharntke, T., Moser, G. & Clough, Y. Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspect. Plant Ecol. Evol. Syst. 12, 183–191 (2010).

    Article 

    Google Scholar 

  • 43.

    Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C. F. Spatial and temporal trends of global pollination benefit. PLoS ONE 7, e35954 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl Acad. Sci. USA 108, 5909–5914 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Ritchie, H. & Roser, M. Urbanization (Our World in Data, 2018); https://ourworldindata.org/urbanization

  • 46.

    Hipolito, J., Boscolo, D. & Viana, B. F. Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agriculture Ecosyst. Environ. 256, 218–225 (2018).

    Article 

    Google Scholar 

  • 47.

    Begotti, R. A. & Peres, C. A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy 96, 10 (2020).

    Article 

    Google Scholar 

  • 48.

    Pirk, C. W. W., Strauss, U., Yusuf, A. A., Démares, F. & Human, H. Honeybee health in Africa—a review. Apidologie 47, 276–300 (2016).

    Article 

    Google Scholar 

  • 49.

    Gebremedhn, H., Amssalu, B., Smet, L. D. & de Graaf, D. C. Factors restraining the population growth of Varroa destructor in Ethiopian honey bees (Apis mellifera simensis). PLoS ONE 14, e0223236 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Junge, X., Lindemann-Matthies, P., Hunziker, M. & Schüpbach, B. Aesthetic preferences of non-farmers and farmers for different land-use types and proportions of ecological compensation areas in the Swiss lowlands. Biol. Conserv. 144, 1430–1440 (2011).

    Article 

    Google Scholar 

  • 51.

    Lee, H., Sumner, D. A. & Champetier, A. Pollination markets and the coupled futures of almonds and honey bees: simulating impacts of shifts in demands and costs. Am. J. Agric. Econ. 101, 230–249 (2019).

    Article 

    Google Scholar 

  • 52.

    Rucker, R. R., Thurman, W. N. & Burgett, M. Colony collapse and the consequences of bee disease: market adaptation to environmental change. J. Assoc. Environ. Resour. Econ. 6, 927–960 (2019).

    Google Scholar 

  • 53.

    Breeze, T. D. et al. Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People Nat. 1, 562–572 (2019).

    Article 

    Google Scholar 

  • 54.

    Hall, D. M. & Martins, D. J. Human dimensions of insect pollinator conservation. Curr. Opin. Insect Sci. 38, 107–114 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Zommers, Z. et al. Burning embers: towards more transparent and robust climate-change risk assessments. Nat. Rev. Earth Environ. 1, 516–529 (2020).

    Article 

    Google Scholar 

  • 56.

    Duijm, N. J. Recommendations on the use and design of risk matrices. Saf. Sci. 76, 21–31 (2015).

    Article 

    Google Scholar 

  • 57.

    Peace, C. The risk matrix: uncertain results? Policy Pract. Health Saf. 15, 131–144 (2017).

    Article 

    Google Scholar 

  • 58.

    Morgan, M. G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl Acad. Sci. USA 111, 7176–7184 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Regan, H. M., Colyvan, M. & Burgman, M. A. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl. 12, 618–628 (2002).

    Article 

    Google Scholar 

  • 60.

    FAOStat (FAO, 2017); http://www.fao.org/faostat/en/#data

  • 61.

    Regional Report for Africa on Pollinators and Pollination and Food Production UNEP/CBD/COP/13/INF/36 (Convention on Biological Diversity, 2016).

  • 62.

    Sutherland, W. J., Fleishman, E., Mascia, M. B., Pretty, J. & Rudd, M. A. Methods for collaboratively identifying research priorities and emerging issues in science and policy. Methods Ecol. Evol. 2, 238–247 (2011).

    Article 

    Google Scholar 

  • 63.

    Wickham, H. ggplot2. R v.4.0.0 https://ggplot2.tidyverse.org/ (2016).

  • 64.

    Christensen, R. H. B. ordinal. R v.4.0.3 http://www.cran.r-project.org/package=ordinal/ (2018).

  • 65.

    Menard, S. Applied Logistic Regression Analysis (SAGE Publications, 2002).

  • 66.

    Hill, R. et al. Biocultural approaches to pollinator conservation. Nat. Sustain. 2, 214–222 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Salt tolerance-based niche differentiation of soil ammonia oxidizers

    Designing better batteries for electric vehicles