The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (IPBES, 2016).
Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).
Google Scholar
Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1799 (2014).
Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).
Google Scholar
Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl Acad. Sci. USA 113, 140–145 (2016).
Google Scholar
Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B 287, 20200922 (2020).
Google Scholar
Aizen, M. A. et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25, 3516–3527 (2019).
Google Scholar
Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).
Google Scholar
Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agric. Ecosyst. Environ. 216, 44–50 (2016).
Google Scholar
Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. R. Landscape impacts on pollinator communities in temperate systems: evidence and knowledge gaps. Funct. Ecol. 31, 26–37 (2017).
Google Scholar
Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685 (2020).
Google Scholar
Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395 (2017).
Google Scholar
Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547 (2017).
Google Scholar
Tonietto Rebecca, K. & Larkin Daniel, J. Habitat restoration benefits wild bees: a meta‐analysis. J. Appl. Ecol. 55, 582–590 (2017).
Google Scholar
Wintermantel, D., Odoux, J.-F., Chadœuf, J. & Bretagnolle, V. Organic farming positively affects honeybee colonies in a flower-poor period in agricultural landscapes. J. Appl. Ecol. 56, 1960–1969 (2019).
Dicks, L. V. et al. Ten policies for pollinators. Science 354, 975–976 (2016).
Google Scholar
FAO’s Global Action on Pollination Services for Sustainable Agriculture: National Initiatives (FAO, 2020); http://www.fao.org/pollination/major-initiatives/national-initiatives/en/
Conservation and Sustainable Use of Pollinators CBD/COP/DEC/14/6 30 November 2018 (Convention on Biological Diversity, 2018).
Teichroew, J. L. et al. Is China’s unparalleled and understudied bee diversity at risk? Biol. Conserv. 210, 19–28 (2017).
Google Scholar
Breeze, T. D., Gallai, N., Garibaldi, L. A. & Li, X. S. Economic measures of pollination services: shortcomings and future directions. TREE 31, 927–939 (2016).
Google Scholar
Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
Hall, D. M. & Steiner, R. Insect pollinator conservation policy innovations at subnational levels: lessons for lawmakers. Environ. Sci. Policy 93, 118–128 (2019).
Google Scholar
Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
Google Scholar
Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).
Google Scholar
Kovács-Hostyánszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689 (2017).
Google Scholar
Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).
Google Scholar
Basu, P. et al. Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecol. Evol. 6, 6983–6992 (2016).
Google Scholar
Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).
Google Scholar
Jayne, T. S., Snapp, S., Place, F. & Sitko, N. Sustainable agricultural intensification in an era of rural transformation in Africa. Glob. Food Security 20, 105–113 (2019).
Google Scholar
Mitchell, E. A. D. et al. A worldwide survey of neonicotinoids in honey. Science 358, 109–111 (2017).
Google Scholar
Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).
Google Scholar
Rundlof, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).
Google Scholar
Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37, 616–626 (2012).
Google Scholar
Neonicotinoid Insecticides: Use and Effects in African Agriculture: a Review and Recommendations to Policymakers (NASAC, 2019); https://nasaconline.org/en/index.php/2020/05/26/neonicotinoid-insecticides-use-and-effects-in-african-agriculture-a-review-and-recommendations-to-policy-makers/
Herrando, S. et al. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 9, 5680 (2019).
Google Scholar
Brookes, G. & Barfoot, P. GM Crops: Global Socio-economic and Environmental Impacts 1996-2018 (PG Economics Ltd, 2020); https://pgeconomics.co.uk/pdf/globalimpactfinalreportJuly2020.pdf
Farina, W. M., Balbuena, M. S., Herbert, L. T., Gonalons, C. M. & Vazquez, D. E. Effects of the herbicide glyphosate on honey bee sensory and cognitive abilities: individual impairments with implications for the hive. Insects 10, 354 (2019).
Google Scholar
Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).
Google Scholar
Regan, E. C. et al. Global trends in the status of bird and mammal pollinators. Conserv. Lett. 8, 397–403 (2015).
Google Scholar
Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).
Google Scholar
Samnegård, U., Hambäck, P. A., Lemessa, D., Nemomissa, S. & Hylander, K. A heterogeneous landscape does not guarantee high crop pollination. Proc. Biol. Sci. 283, 20161472 (2016).
Google Scholar
Groeneveld, J. H., Tscharntke, T., Moser, G. & Clough, Y. Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspect. Plant Ecol. Evol. Syst. 12, 183–191 (2010).
Google Scholar
Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C. F. Spatial and temporal trends of global pollination benefit. PLoS ONE 7, e35954 (2012).
Google Scholar
Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl Acad. Sci. USA 108, 5909–5914 (2011).
Google Scholar
Ritchie, H. & Roser, M. Urbanization (Our World in Data, 2018); https://ourworldindata.org/urbanization
Hipolito, J., Boscolo, D. & Viana, B. F. Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agriculture Ecosyst. Environ. 256, 218–225 (2018).
Google Scholar
Begotti, R. A. & Peres, C. A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy 96, 10 (2020).
Google Scholar
Pirk, C. W. W., Strauss, U., Yusuf, A. A., Démares, F. & Human, H. Honeybee health in Africa—a review. Apidologie 47, 276–300 (2016).
Google Scholar
Gebremedhn, H., Amssalu, B., Smet, L. D. & de Graaf, D. C. Factors restraining the population growth of Varroa destructor in Ethiopian honey bees (Apis mellifera simensis). PLoS ONE 14, e0223236 (2019).
Google Scholar
Junge, X., Lindemann-Matthies, P., Hunziker, M. & Schüpbach, B. Aesthetic preferences of non-farmers and farmers for different land-use types and proportions of ecological compensation areas in the Swiss lowlands. Biol. Conserv. 144, 1430–1440 (2011).
Google Scholar
Lee, H., Sumner, D. A. & Champetier, A. Pollination markets and the coupled futures of almonds and honey bees: simulating impacts of shifts in demands and costs. Am. J. Agric. Econ. 101, 230–249 (2019).
Google Scholar
Rucker, R. R., Thurman, W. N. & Burgett, M. Colony collapse and the consequences of bee disease: market adaptation to environmental change. J. Assoc. Environ. Resour. Econ. 6, 927–960 (2019).
Breeze, T. D. et al. Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People Nat. 1, 562–572 (2019).
Google Scholar
Hall, D. M. & Martins, D. J. Human dimensions of insect pollinator conservation. Curr. Opin. Insect Sci. 38, 107–114 (2020).
Google Scholar
Zommers, Z. et al. Burning embers: towards more transparent and robust climate-change risk assessments. Nat. Rev. Earth Environ. 1, 516–529 (2020).
Google Scholar
Duijm, N. J. Recommendations on the use and design of risk matrices. Saf. Sci. 76, 21–31 (2015).
Google Scholar
Peace, C. The risk matrix: uncertain results? Policy Pract. Health Saf. 15, 131–144 (2017).
Google Scholar
Morgan, M. G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl Acad. Sci. USA 111, 7176–7184 (2014).
Google Scholar
Regan, H. M., Colyvan, M. & Burgman, M. A. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl. 12, 618–628 (2002).
Google Scholar
FAOStat (FAO, 2017); http://www.fao.org/faostat/en/#data
Regional Report for Africa on Pollinators and Pollination and Food Production UNEP/CBD/COP/13/INF/36 (Convention on Biological Diversity, 2016).
Sutherland, W. J., Fleishman, E., Mascia, M. B., Pretty, J. & Rudd, M. A. Methods for collaboratively identifying research priorities and emerging issues in science and policy. Methods Ecol. Evol. 2, 238–247 (2011).
Google Scholar
Wickham, H. ggplot2. R v.4.0.0 https://ggplot2.tidyverse.org/ (2016).
Christensen, R. H. B. ordinal. R v.4.0.3 http://www.cran.r-project.org/package=ordinal/ (2018).
Menard, S. Applied Logistic Regression Analysis (SAGE Publications, 2002).
Hill, R. et al. Biocultural approaches to pollinator conservation. Nat. Sustain. 2, 214–222 (2019).
Google Scholar
Source: Ecology - nature.com