in

A heterocyte glycolipid-based calibration to reconstruct past continental climate change

  • 1.

    Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).

  • 3.

    Prahl, F. G. & Wakeham, S. G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330, 367–369 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Rampen, S. W. et al. Evaluation of long chain 1,14-alkyl diols in marine sediments as indicators for upwelling and temperature. Org. Geochem. 76, 39–47 (2014).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Conte, M. H. et al. Global temperature calibration of the alkenone unsaturation index (UK’37) in surface waters and comparison with surface sediments. Geochem. Geophys. Geosyst. 7, Q02005 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Robinson, S. A. et al. Early Jurassic North Atlantic sea‐surface temperatures from TEX86 palaeothermometry. Sedimentology 64, 215–230 (2017).

    Article 

    Google Scholar 

  • 9.

    Forster, A., Schouten, S., Baas, M. & Sinninghe Damsté, J. S. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35, 919–922 (2007).

    ADS 
    Article 

    Google Scholar 

  • 10.

    LaRiviere, J. P. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Zachos, J. C. et al. Extreme warming of mid-latitude coastal ocean during the Paleocene–Eocene Thermal Maximum: inferences from TEX86 and isotope data. Geology 34, 737–740 (2006).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Powers, L. A. et al. Crenarchaeotal membrane lipids in lake sediments: a new paleotemperature proxy for continental paleoclimate reconstruction? Geology 32, 613–616 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Toney, J. L. et al. Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States. Geochim. Cosmochim. Acta 74, 1563–1578 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    De Jonge, C. et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim. Cosmochim. Acta 141, 97–112 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Tierney, J. E. & Russell, J. M. Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of the MBT/CBT paleoproxy. Org. Geochem. 40, 1032–1036 (2009).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Bauersachs, T., Rochelmeier, J. & Schwark, L. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers. Biogeosciences 12, 3741–3751 (2015).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Gambacorta, A., Trincone, A., Soriente, A. & Sodano, G. Chemistry of glycolipids from the heterocysts of nitrogen-fixing cyanobacteria. Curr. Top. Phytochem. 2, 145–150 (1999).

    CAS 

    Google Scholar 

  • 18.

    Bauersachs, T. et al. Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry 70, 2034–2039 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Wörmer, L., Cirés, S., Velázquez, D., Quesada, A. & Hinrichs, K.-U. Cyanobacterial heterocyst glycolipids in cultures and environmental samples: diversity and biomarker potential. Limnol. Oceanogr. 57, 1775–1788 (2012).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Whitton, B. Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer Netherlands, 2012).

  • 21.

    Bauersachs, T., Stal, L. J., Grego, M. & Schwark, L. Temperature induced changes in the heterocyst glycolipid composition of N2 fixing heterocystous cyanobacteria. Org. Geochem. 69, 98–105 (2014).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Stal, L. J. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ. Microbiol. 11, 1632–1645 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Loomis, S. E., Russell, J. M., Ladd, B., Street-Perrott, F. A. & Sinninghe Damsté, J. S. Calibration and application of the branched GDGT temperature proxy on East African lake sediments. Earth Planet. Sci. Lett. 357–358, 277–288 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Loomis, S. E., Russell, J. M., Eggermont, H., Verschuren, D. & Sinninghe Damsté, J. S. Effects of temperature, pH and nutrient concentration on branched GDGT distributions in East African lakes: implications for paleoenvironmental reconstruction. Org. Geochem. 66, 25–37 (2014).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Bauersachs, T. et al. Heterocyte glycolipids indicate polyphyly of stigonematalean cyanobacteria. Phytochemistry 166, 112059 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Hecky, R. E. & Kling, H. J. The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: species composition, biomass, chlorophyll content, and spatio-temporal distribution. Limnol. Oceanogr. 26, 548–564 (1981).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Descy, J.-P. & Sarmento, H. Microorganisms of the East African great lakes and their response to environmental changes. Freshw. Rev. 1, 59–73 (2008).

    Article 

    Google Scholar 

  • 28.

    McGlue, M. M. et al. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. J. Paleolimnol. 40, 635–653 (2008).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Bale, N. J. et al. Impact of trophic state on the distribution of intact polar lipids in surface waters of lakes. Limnol. Oceanogr. 61, 1065–1077 (2016).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Bauersachs, T. et al. Distribution of long chain heterocyst glycolipids in cultures of the thermophilic cyanobacterium Mastigocladus laminosus and a hot spring microbial mat. Org. Geochem. 56, 19–24 (2013).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Rethemeyer, J. et al. Distribution of polar membrane lipids in permafrost soils and sediments of a small high Arctic catchment. Org. Geochem. 41, 1130–1145 (2010).

    CAS 
    Article 

    Google Scholar 

  • 32.

    D’Andrea, W. J., Huang, Y., Fritz, S. C. & Anderson, N. J. Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc. Natl Acad. Sci. USA 108, 9765–9769 (2011).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Russell, J. M., Hopmans, E. C., Loomis, S. E., Liang, J. & Sinninghe Damsté, J. S. Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: effects of temperature, pH, and new lacustrine paleotemperature calibrations. Org. Geochem. 117, 56–69 (2018).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Pérez, L. et al. Bioindicators of climate and trophic state in lowland and highland aquatic ecosystems of the Northern Neotropics. Rev. Biol. Trop. 61, 603–644 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S. & Verschuren, D. Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochim. Cosmochim. Acta 73, 4232–4249 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Deng, L., Jia, G., Jin, C. & Li, S. Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org. Geochem. 96, 11–17 (2016).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Vollmer, M. K. et al. Deep-water warming trend in Lake Malawi, East Africa. Limnol. Oceanogr. 50, 727–732 (2005).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Kraemer, B. M. et al. Century-long warming trends in the upper water column of Lake Tanganyika. PLoS ONE 10, e0132490 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Moisander, P. H., Paerl, H. W. & Zehr, J. P. Effects of inorganic nitrogen on taxa-specific cyanobacterial growth and nifH expression in a subtropical estuary. Limnol. Oceanogr. 53, 2519–2532 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Kahru, M., Leppänen, J.-M. & Rud, O. Cyanobacterial blooms cause heating of the sea surface. Mar. Ecol. Prog. Ser. 101, 1–7 (1993).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Wurl, O. et al. Warming and inhibition of salinization at the ocean’s surface by cyanobacteria. Geophys. Res. Lett. 45, 4230–4237 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Capone, D. et al. An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Mar. Ecol. Prog. Ser. 172, 281–292 (1998).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Tierney, J. E. et al. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, 252–255 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Gasse, F., Lédée, V., Massault, M. & Fontes, J. C. Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342, 57–59 (1989).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. Compilations and splined-smoothed calculations of continuous records of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing since the penultimate glacial maximum. Earth Syst. Sci. Data 9, 363–387 (2017).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Ivory, S. J. & Russell, J. Lowland forest collapse and early human impacts at the end of the African Humid Period at Lake Edward, equatorial East Africa. Quat. Res. 89, 7–20 (2018).

    Article 

    Google Scholar 

  • 49.

    Powers, L. A. Large temperature variability in the southern African tropics since the last glacial maximum. Geophys. Res. Lett. 32, L08706 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Woltering, M., Johnson, T. C., Werne, J. P., Schouten, S. & Sinninghe Damsté, J. S. Late Pleistocene temperature history of Southeast Africa: a TEX86 temperature record from Lake Malawi. Palaeogeogr. Palaeoclimatol. Palaeoecol. 303, 93–102 (2011).

    Article 

    Google Scholar 

  • 51.

    Berke, M. A., Johnson, T. C., Werne, J. P., Schouten, S. & Sinninghe Damsté, J. S. A mid-Holocene thermal maximum at the end of the African Humid Period. Earth Planet. Sci. Lett. 351–352, 95–104 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Bonnefille, R., Roeland, J. C. & Guiot, J. Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature 346, 347–349 (1990).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Sinninghe Damsté, J. S., Ossebaar, J., Schouten, S. & Verschuren, D. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quat. Sci. Rev. 50, 43–54 (2012).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Berke, M. A. et al. Characterization of the last deglacial transition in tropical East Africa: insights from Lake Albert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 409, 1–8 (2014).

    Article 

    Google Scholar 

  • 56.

    Loomis, S. E. et al. The tropical lapse rate steepened during the last glacial maximum. Sci. Adv. 3, e1600815 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Tierney, J. E., Russell, J. M. & Huang, Y. A molecular perspective on Late Quaternary climate and vegetation change in the Lake Tanganyika basin, East Africa. Quat. Sci. Rev. 29, 787–800 (2010).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Schouten, S., Rijpstra, W. I. C., Durisch-Kaiser, E., Schubert, C. J. & Sinninghe Damsté, J. S. Distribution of glycerol dialkyl glycerol tetraether lipids in the water column of Lake Tanganyika. Org. Geochem. 53, 34–37 (2012).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Haberyan, K. A. & Hecky, R. E. The late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeogr. Palaeoclimatol. Palaeoecol. 61, 169–197 (1987).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Berke, M. A. et al. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa. Quat. Sci. Rev. 55, 59–74 (2012).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Weijers, J. W. H., Schefuß, E., Schouten, S. & Sinninghe Damsté, J. S. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science 315, 1701–1704 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Klages, J. P. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 64.

    Costa, K. M., Russell, J. M., Vogel, H. & Bijaksana, S. Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 467–475 (2015).

    Article 

    Google Scholar 

  • 65.

    Ohlendorf, C. et al. Mechanisms of lake-level change at Laguna Potrok Aike (Argentina) – insights from hydrological balance calculations. Quat. Sci. Rev. 71, 27–45 (2013).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Hawes, I., Howard-Williams, C. & Sorrell, B. Decadal timescale variability in ecosystem properties in the ponds of the McMurdo Ice Shelf, southern Victoria Land, Antarctica. Antarct. Sci. 26, 219–230 (2014).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Bauersachs, T. et al. Rapid analysis of long-chain glycolipids in heterocystous cyanobacteria using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23, 1387–1394 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Shirkhorshidi, A. S., Aghabozorgi, S. & Wah, T. Y. A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS ONE 10, e0144059 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 69.

    Kelly, M. A. et al. Expanded glaciers during a dry and cold last glacial maximum in equatorial East Africa. Geology 42, 519–522 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Spencer Compton, Karna Morey, Tara Venkatadri, and Lily Zhang named 2021-22 Goldwater Scholars

    Navigating beneath the Arctic ice