in

A millennium of trophic stability in Atlantic cod (Gadus morhua): transition to a lower and converging trophic niche in modern times

  • 1.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Erlandson, J. M. & Rick, T. C. Archaeology meets marine ecology: The antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Ann. Rev. Mar. Sci. 2, 231–251 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: Why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5, 349–359 (2012).

    Article 

    Google Scholar 

  • 7.

    Misarti, N., Finney, B. P., Maschner, H. & Wooller, M. J. Changes in northeast Pacific marine ecosystems over the last 4500 years: Evidence from stable isotope analysis of bone collagen from archaeological middens. Holocene 19, 1139–1151 (2009).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Alter, S. E., Newsome, S. D. & Palumbi, S. R. Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: Insights from ancient DNA and stable isotopes. PLoS One 7, 35–39 (2012).

    Google Scholar 

  • 9.

    Szpak, P., Orchard, T. J., Mckechnie, I. & Gröcke, D. R. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: Isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).

    Article 

    Google Scholar 

  • 10.

    McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl. Acad. Sci. USA 111, E807–E816 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Orton, D. C. Archaeology as a tool for understanding past marine resource use and its impact. In Perspectives on Oceans Past (eds Schwerdtner Máñez, K. & Poulsen, B.) 47–69 (Springer, 2016).

    Google Scholar 

  • 12.

    Barrett, J. H., Locker, A. M. & Roberts, C. M. The origins of intensive marine fishing in medieval Europe: The English evidence. Proc. R. Soc. Lond. B. 271, 2417–2421 (2004).

    Article 

    Google Scholar 

  • 13.

    Edvardsson, R. The Role of Marine Resources in the Medieval Economy of Vestfirðir, Iceland (CUNY, 2019).

    Google Scholar 

  • 14.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article 

    Google Scholar 

  • 15.

    Wada, E., Kabaya, Y. & Kurihara, Y. Stable isotopic structure of aquatic ecosystems. J. Biosci. 18, 483–499 (1993).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta. 48, 1135–1140 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Newsome, S. D. et al. Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: Isotopic analysis of northern fur seal teeth. Mar. Ecol. Prog. Ser. 332, 211–224 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: A long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 1–7 (2016).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Emslie, S. D. & Patterson, W. P. Abrupt recent shift in δ13C and δ15N values in Adélie Penguin eggshell in Antarctica. Proc. Natl. Acad. Sci. USA 104, 11666–11669 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Emslie, S. D., Polito, M. J. & Patterson, W. P. Stable isotope analysis of ancient and modern Gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarct. Sci. 25, 213–218 (2013).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Drinkwater, K. F. The regime shift of the 1920s and 1930s in the North Atlantic. Prog. Oceanogr. 68, 134–151 (2006).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Ástþórsson, Ó. S., Gíslason, Á. & Jónsson, S. Climate variability and the Icelandic marine ecosystem. Deep-Sea Res. PT II(54), 2456–2477 (2007).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Edvardsson, R., Bárðarson, H., Patterson, W. P., Timsic, S. & Ólafsdóttir, G. Á. Change in Atlantic cod migrations and adaptability of early land-based fishers to severe climate variation in the North Atlantic. Quat. Res. (In press).

  • 25.

    Dahl-Jensen, D. et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 (1998).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Ogilvie, A. E. & Jonsson, T. The Iceberg in the Mist: Northern Research in Pursuit of a Little Age (Kluwer Academic, 2001).

    Book 

    Google Scholar 

  • 27.

    Jiang, H., Eiríksson, J., Schulz, M., Knudsen, K. L. & Seidenkrantz, M. S. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology 33, 73–76 (2005).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Vinther, B. M. et al. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 29, 522–538 (2010).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Patterson, W. P., Dietrich, K. A., Holmden, C. & Andrews, J. T. Two millennia of North Atlantic seasonality and implications for Norse colonies. Proc. Natl. Acad. Sci. USA 107, 5306–5310 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Geffen, A. J. et al. High-latitude climate variability and its effect on fisheries resources as revealed by fossil cod otoliths. ICES J. Mar. Sci. 68, 1081–1089 (2011).

    Article 

    Google Scholar 

  • 31.

    Ólafsdóttir, G. Á., Westfall, K. M., Edvardsson, R. & Pálsson, S. Historical DNA reveals the demographic history of Atlantic cod (Gadus morhua) in medieval and early modern Iceland. Proc. R. Soc. Lond. B. 281, 20132976 (2014).

    Google Scholar 

  • 32.

    Ólafsdóttir, G. Á., Pétursdóttir, G., Bárðarson, H. & Edvardsson, R. A millennium of north-east Atlantic cod juvenile growth trajectories inferred from archaeological otoliths. PLoS One 12, e0187134 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).

    Article 

    Google Scholar 

  • 34.

    Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Kindsvater, H. K. & Palkovacs, E. P. Predicting eco-evolutionary impacts of fishing on body size and trophic role of Atlantic cod. Copeia 105, 475–482 (2017).

    Article 

    Google Scholar 

  • 37.

    Persson, A. & Hansson, L. A. Diet shift in fish following competitive release. CJFAS 56, 70–78 (1999).

    Google Scholar 

  • 38.

    Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: Confirmations from the past. PLoS One 9, e103132 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Bas, M. et al. Back to the future? Late Holocene marine food web structure in a warm climatic phase as a predictor of trophodynamics in a warmer South-Western Atlantic Ocean. Glob. Change Biol. 25, 404–419 (2019).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth-Sci. Rev. 106, 131–148 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Bas, M. & Cardona, L. Effects of skeletal element identity, delipidation and demineralization on the analysis of stable isotope ratios of C and N in fish bone. J. Fish. Biol. 92, 420–437 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Harrison, R. The Siglunes 2011/12 Archaeofauna. Interim Report on the Fishing Station’s Sampled Faunal Remains. (http://www.nabohome.org/uploads/ramonah/RH_Siglunes_Faunal_Report_5_30_2014.pdf (2014).

  • 43.

    Lárusdóttir, B., Roberts, H. M., Þorgeirsdóttir, S. S., Harrison, R. & Sigurgeirsson, Á. Siglunes. Archaeological investigations in 2011. http://www.nabohome.org/uploads/ramonah/FS480-11121_Siglunes_2011.pdf (2012).

  • 44.

    Leyden, J. J., Wassenaar, L. I., Hobson, K. A. & Walker, E. G. Stable hydrogen isotopes of bison bone collagen as a proxy for Holocene climate on the Northern Great Plains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 87–99 (2006).

    Article 

    Google Scholar 

  • 45.

    Craig, H. Standard for reporting concentration of deuterium and oxygen-18 in natural waters. Science 133, 1702–1703 (1961).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Glob. Change Biol. 12, 611–625 (2006).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).

    Google Scholar 

  • 49.

    Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Glob. Biogeochem. Cycles 13, 307–335 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & Mcnichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Glob. Biogeochem. Cycles 17, 1–20 (2003).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Quay, P. D., Tilbrook, B. & Wong, C. S. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256, 74–79 (1992).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.1 (2020).

  • 53.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Þór, J. Þ. British Trawlers in Icelandic Waters: History of British Steam Trawling off Iceland, 1889–1916, and the Anglo-Icelandic Fisheries Dispute, 1896–1897 (Fjölvi, 1992).

    Google Scholar 

  • 57.

    Þór, J. Þ. Saga Sjávarútvegs á Íslandi. 1902–1939 Vélaöld (Bókaútgáfan Hólar, 2003).

    Google Scholar 

  • 58.

    Gill, A. B. The dynamics of prey choice in fish: The importance of prey size and satiation. J. Fish. Biol. 63, 105–116 (2003).

    Article 

    Google Scholar 

  • 59.

    Jennings, S. Size-based analyses of aquatic food webs. In Aquatic Food Webs: An Ecosystem Approach (eds Belgrano, A. et al.) 86–97 (Oxford University Press, 2005).

    Chapter 

    Google Scholar 

  • 60.

    Zenteno, L. et al. Dietary consistency of male South American sea lions (Otaria flavescens) in southern Brazil during three decades inferred from stable isotope analysis. Mar. Biol. 162, 275–289 (2015).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Vales, D. G. et al. Holocene changes in the trophic ecology of an apex marine predator in the South Atlantic Ocean. Oecologia 183, 555–570 (2017).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Bas, M. et al. Predicting habitat use by the Argentine hake Merluccius hubbsi in a warmer world: Inferences from the Middle Holocene. Oecologia 193, 461–474 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Sharpe, D. M. & Chapman, L. J. Niche expansion in a resilient endemic species following introduction of a novel top predator. Freshw. Biol. 59, 2539–2554 (2014).

    Article 

    Google Scholar 

  • 64.

    Jaworski, A. & Ragnarsson, S. Á. Feeding habits of demersal fish in Icelandic waters: A multivariate approach. ICES J. Mar. Sci. 63, 1682–1694 (2006).

    Article 

    Google Scholar 

  • 65.

    Law, R. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57, 659–668 (2000).

    Article 

    Google Scholar 

  • 66.

    Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).

    Article 

    Google Scholar 

  • 67.

    Jennings, S. & Van Der Molen, J. Trophic levels of marine consumers from nitrogen stable isotope analysis: Estimation and uncertainty. ICES J. Mar. Sci. 72, 2289–2300 (2015).

    Article 

    Google Scholar 

  • 68.

    MFRI. Atlantic cod Gadus morhua (MFRI Assessment Reports 2020). Marine and Freshwater Research Institute. https://www.hafogvatn.is/static/extras/images/01-cod_tr_isl1232625.pdf (2020).

  • 69.

    Thorsteinsson, V., Pálsson, Ó. K., Tómasson, G. G., Jónsdóttir, I. G. & Pampoulie, C. Consistency in the behaviour types of the Atlantic cod: Repeatability, timing of migration and geo-location. Mar. Ecol. Prog. Ser. 462, 251–260 (2012).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Diving into the global problem of technology waste

    Imagining the distant past — and finding keys to the future