Bailey, D. L., Humm, J. L., Todd-Pokropek, A. & van Aswegen, A. Nuclear Medicine Physics: A Handbook for Teachers and Students. International Atomic Energy Agency (International Atomic Energy Agency, 2014).
McGraw-Hill. McGraw-Hill encyclopedia of science & technology. (McGraw-Hill, 2007).
Medawar, P. B. An unsolved problem of biology. in The uniqueness of the individual (ed. Medawar, P. B.) 44–70 (Basic Books, Inc., 1952).
Leike, A. Demonstration of the exponential decay law using beer froth. Eur. J. Phys. 23, 21–26 (2002).
Google Scholar
Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39, 175–192 (1980).
Google Scholar
Vetter, E. F. Estimation of natural mortality in fish stocks: a review. Fish. Bull. 86, 25–43 (1988).
Gosselin, J., Zedrosser, A., Swenson, J. E. & Pelletier, F. The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proc. R. Soc. B Biol. Sci. 282, 1–9 (2015).
Nowak, D. J., Kuroda, M. & Crane, D. E. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban . Urban Green. 2, 139–147 (2004).
Google Scholar
Hoenig, J. M. et al. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate. ICES J. Mar. Sci. 73, 2453–2467 (2016).
Google Scholar
Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance. (Pearson Education Limited, 2014).
Myers, R. A., Bowen, K. G. & Barrowman, N. J. Maximum reproductive rate of fish at low population sizes. Can. J. Fish. Aquat. Sci. 56, 2404–2419 (1999).
Simpfendorfer, C. A., Bonfil, R. & Latour, R. J. Mortality estimation. in. FAO Fish. Tech. Pap. 474, 127 (2005).
Cortés, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).
Google Scholar
IUCN. Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. Geographical 14, 1–113 (2019).
Myers, R. A. & Worm, B. Extinction, survival or recovery of large predatory fishes. Philos. Trans. R. Soc. B Biol. Sci. 360, 13–20 (2005).
Google Scholar
Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. Proc. Natl. Acad. Sci. U. S. A. 116, 9658–9664 (2019).
Google Scholar
Gavrilov, L. & Gavrilova, N. The biology of life span: a quantitative approach. (Harwood Academic Publishers, 1991).
Sekharan, K. Estimates of the stocks of oil sardine and mackerel in the present fishing grounds off the West coast of India. Indian J. Fish. 21, 177–182 (1974).
Alagaraja, K. Simple methods for estimation of parameters for assessing exploited fish stocks. Indian J. Fish. 31, 177–208 (1984).
Cadima, E. L. Fish stock assessment manual. FAO Fish. Tech. Pap. 393, 161 (2003).
Hewitt, D. A. & Hoenig, J. M. Comparison of two approaches for estimating natural mortality based on longevity. Fish. Bull. 103, 433–437 (2005).
Dureuil, M. et al. Unified natural mortality estimation for teleosts and elasmobranchs. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps13704 (accepted).
Litzgus, J. D. Sex differences in longevity in the spotted turtle (Clemmys guttata). Copeia 2, 281–288 (2006).
Google Scholar
Calder, W. A. III Body size, mortality, and longevity. J. Theor. Biol. 102, 135–144 (1983).
Google Scholar
Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849–872 (1972).
Google Scholar
Holt, S. J. A note on the relation between the mortality rate and the duration of life in an exploited fish population. Int. Comm. Northwest Atl. Fish. Res. Bull. 2, 73–75 (1965).
Hoenig, J. M. Should natural mortality estimators based on maximum age also consider sample size? Trans. Am. Fish. Soc. 146, 136–146 (2017).
Google Scholar
Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).
Google Scholar
Hamilton, W. D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).
Google Scholar
Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).
Google Scholar
Kirkwood, T. B. L. & Rose, M. R. Evolution of senescence: late survival sacrificed for reproduction. Philos. Trans. R. Soc. Lond., B 332, 15–24 (1991).
Google Scholar
Froese, R. & Pauly, D. FishBase. World Wide Web Electronic Publication (2019). Available at: www.fishbase.org. (accessed: 6th February 2018)
I. C. E. S. Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners (North Sea, Skagerrak and Kattegat, eastern English Channel). in Report of the ICES Advisory Committee, 2019. ICES Advice 2019, her.27.3a47d 11 (2019).
Caswell, H. & Shyu, E. Senescence, selection gradients and mortality. in The Evolution of Senescence in the Tree of Life (eds. Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R.) 56–82 (Cambridge University Press, 2017). https://doi.org/10.1017/9781139939867.004
Promislow, D. E. L. Senescence in natural populations of mammals: a comparative study. Evolution 45, 1869–1887 (1991).
Google Scholar
Sibly, R. M., Collett, D., Promislow, D. E. L., Peacock, D. J. & Harvey, P. H. Mortality rates of mammals. J. Zool. 243, 1–12 (1997).
Google Scholar
Blumstein, D. T. & Møller, A. P. Is sociality associated with high longevity in North American birds? Biol. Lett. 4, 146–148 (2008).
Google Scholar
Nussey, D. H., Froy, H., Lemaitre, J.-F., Gaillard, J.-M. & Austad, S. N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).
Google Scholar
Salguero-Gómez, R. & Jones, O. R.. Life history trade-offs modulate the speed of senescence. in The Evolution of Senescence in the Tree of Life (eds. Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R.) 403–421 (Cambridge University Press, 2017). https://doi.org/10.1017/9781139939867.020
Hoekstra, L. A., Schwartz, T. S., Sparkman, A. M., Miller, D. A. W. & Bronikowski, A. M. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct. Ecol. 34, 38–54 (2020).
Google Scholar
Bonduriansky, R. & Brassil, C. E. Rapid and costly ageing in wild male flies. Nature 420, 377 (2002).
Google Scholar
Zajitschek, F., Zajitschek, S. & Bonduriansky, R. Senescence in wild insects: Key questions and challenges. Funct. Ecol. 34, 26–37 (2020).
Google Scholar
Roach, D. A. & Smith, E. F. Life-history trade-offs and senescence in plants. Funct. Ecol. 34, 17–25 (2020).
Google Scholar
Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).
Google Scholar
Ruby, J. G., Smith, M. & Buffenstein, R. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. Elife 7, 1–18 (2018).
Google Scholar
Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958–960 (1997).
Google Scholar
Cooke, G. M., Tonkins, B. M. & Mather, J. A. Care and Enrichment for Captive Cephalopods. in The Welfare of Invertebrate Animals (eds. Carere, C. & Mather, J.). 179–208 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-13947-6_8
Baudisch, A. et al. The pace and shape of senescence in angiosperms. J. Ecol. 101, 596–606 (2013).
Google Scholar
Halley, J. M., Van Houtan, K. S. & Mantua, N. How survival curves affect populations’ vulnerability to climate change. PLoS One 13, 1–18 (2018).
Google Scholar
Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583 (1825).
Makeham, W. M. On the law of mortality and the construction of annuity tables. Assur. Mag. J. Inst. Actuar. 8, 301–310 (1860).
Google Scholar
Finch, C. E. & Pike, M. C. Maximum life span predictions from the Gompertz mortality model. J. Gerontol. Biol. Sci. 51A, 183–194 (1996).
Google Scholar
Reznick, D. N., Bryant, M. J., Roff, D., Ghalambor, C. K. & Ghalambor, D. E. Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431, 1095–1099 (2004).
Google Scholar
Kirkwood, T. B. L. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–8 (2015).
Google Scholar
Gavrilov, L. A. & Gavrilova, N. S. New trend in old-age mortality: gompertzialization of mortality trajectory. Gerontology 65, 451–457 (2019).
Google Scholar
Ohsumi, S. Interspecies relationships among some biological parameters in cetaceans and estimation of the natural mortality coefficient of the Southern Hemisphere minke whale. Rep. Int. Whal. Comm. 29, 397–406 (1979).
Mizroch, S. A. On the relationship between mortality rate and length in baleen whales. Rep. Int. Whal. Comm. 35, 505–510 (1985).
Source: Ecology - nature.com