in

A new charophyte habitat with a stabilized good ecological potential of mine water

  • 1.

    Schultze, M., Pokrandt, K.-H. & Hille, W. Pit lakes of the Central German lignite mining district: Creation, morphometry and water quality aspects. Limnologica 40, 148–155 (2010).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Kodir, A., Hartono, D. M., Haeruman, H. & Mansur, I. Integrated post mining landscape for sustainable land use: A case study in South Sumatera, Indonesia. Sustain. Environ. Res. 27(4), 203–213 (2017).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Blanchette, M. L. & Lund, M. A. Pit lakes are a global legacy of mining: An integrated approach to achieving sustainable ecosystems and value for communities. Curr. Opin. Sustain. 23, 28–34 (2016).

    Article 

    Google Scholar 

  • 4.

    Manjón, G., Galván, J., Mantero, J., Díaz, I. & García-Tenorio, R. Norm levels in mine pit lakes in south-western Spain. NORM VII, Beijing, China, IAEA Proceedings Series: 277–288 (2015).

  • 5.

    Mantero, J. et al. Pit lakes from Southern Sweden: Natural radioactivity and elementary characterization. Sci. Rep. 10, 13712 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Dolný, A. & Harabiš, F. Underground mining can contribute to freshwater biodiversity conservation: Allogenic succession forms suitable habitats for dragonflies. Biol. Conserv. 145, 109–117 (2012).

    Article 

    Google Scholar 

  • 7.

    European Commission. Directive of the European Parliament and of the Council 2000/60/EC Establishing a Framework for Community Action in the Field of Water Policy. Official Journal 2000 L 327/1 (European Commission, 2000).

    Google Scholar 

  • 8.

    European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/EC): Guidance Document on Eutrophication Assessment in the Context of European Water Policies (Office for Official Publications of the European Communities, 2009).

    Google Scholar 

  • 9.

    Blindow, I., Hargeby, A. & Hilt, S. Facilitation of clear-water conditions in shallow lakes by macrophytes: Differences between charophyte and angiosperm dominance. Hydrobiologia 737, 99–110 (2014).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Conde-Álvarez, R. M., Bañares-España, E., Nieto-Caldera, J. M., Flores-Moya, A. & Figueroa, F. L. Submerged macrophyte biomass distribution in the shallow saline lake Fuente de Piedra (Spain) as function of environmental variables. Anal. Jardín Bot. Madrid 69(1), 119–127 (2012).

    Article 

    Google Scholar 

  • 11.

    Goździejewska, A. M., Skrzypczak, A. R., Paturej, E. & Koszałka, J. Zooplankton diversity of drainage system reservoirs at an opencast mine. Knowl. Manag. Aquat. Ecol. 419, 33 (2018).

    Article 

    Google Scholar 

  • 12.

    Goździejewska, A. M., Gwoździk, M., Kulesza, S., Bramowicz, M. & Koszałka, J. Effects of suspended micro- and nanoscale particles on zooplankton functional diversity of drainage system reservoirs at an open-pit mine. Sci. Rep. 9(1), 16113 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Skrzypczak, A. R. & Napiórkowska-Krzebietke, A. Identification of hydrochemical and hydrobiological properties of mine waters for use in aquaculture. Aquac. Rep. 18, 100460 (2020).

    Article 

    Google Scholar 

  • 14.

    Environment Agency. RBC2 Method Statement: Rivers at risk from diffuse source pressures (mines and minewaters). http://www.environmentagency.gov.uk/subjects/waterquality/955573/1001324/1654756/1903912/?version=1&lang=_e (2008).

  • 15.

    Gogacz, M. The analysis of the quality of waters from mining plant open pit brown coal “Belchatow” joint—stock company off the surface waterways. In Mining Workshops from the cycle “Natural hazards in mining”: Symposium Materials: Occasional Session: Problems of Natural Hazards in Brown Coal mining. Bełchatów, June 2–4, 2004. IGSMiE PAN, Cracow, Series: Symposia and Conferences, Vol 62 (ed. Pilecka, E.) 139–151 (Springer, 2004).

  • 16.

    Pękala, A. The mineral character and geomechanical properties of the transitional rocks from the Mesozoic-Neogene Contact Zone in the Bełchatów lignite deposit. J. Sustain. Min. 13(1), 10–14. https://doi.org/10.7424/jsm140103 (2014).

    Article 

    Google Scholar 

  • 17.

    Davison, W. Iron and manganese in lakes. Earth Sci. Rev. 34(2), 119–163 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Wittkop, C. et al. Controls on iron- and manganese-mineral solubility in ferruginous lakes. Geol. Soc. Am. Abstr. Progr. 49, 6 (2017).

    Google Scholar 

  • 19.

    Martyniak, R. & Sołtyk, W. Changes in groundwater chemistry resulting from dewatering lignite deposits Belchatow. Min. Geoeng. 33(2), 307–316 (2009).

    Google Scholar 

  • 20.

    Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential, chemical status and the method of classifying the status of surface water bodies as well as environmental quality standards for priority substances. Official Journal of the Laws of 2019, item 2149.

  • 21.

    Zdechlik, R. & Kania, J. Hydrogeochemical background and distribution of indicator ion concentrations in the region of the Bełchatów lignite deposit. Contemp. Probl. Hydrog. 11(2), 327–334 (2003) (in Polish, with English summary).

    Google Scholar 

  • 22.

    Marszelewski, W., Dembowska, E., Napiórkowski, P. & Solarczyk, A. Understanding abiotic and biotic conditions in post-mining pit lakes for efficient management: A case study (Poland). Mine Water Environ. 36, 418–428 (2017).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Sobolev, D., Moore, K. & Morris, A. L. Nutrients and light limitation of phytoplankton biomass in a Turbid Southeastern reservoir. Implic. Water Qual. Southeast Nat. 8(2), 255–266 (2009).

    Article 

    Google Scholar 

  • 24.

    Laurenceau-Cornec, E. C. et al. The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: Insights from free drifting sediment trap deployments in naturally iron-fertilized waters near the Kerguelen Plateau. Biogeosciences 12, 1007–1027. https://doi.org/10.5194/bg-12-1007-2015 (2015).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Stottmeister, U. et al. Strategies for remediation of former open cast mining areas in eastern Germany. In Environmental Impacts of Mining Activities: Emphasis on Mitigation and Remediation (ed. Azcue, J. M.) 263–296 (Springer, 1999).

    Chapter 

    Google Scholar 

  • 26.

    Søndergaard, M., Larsen, S. E., Johansson, L. S., Lauridsen, T. L. & Jeppesen, E. Ecological classification of lakes: Uncertainty and the influence of year-to-year variability. Ecol. Indic. 61, 248–257 (2016).

    Article 

    Google Scholar 

  • 27.

    Napiórkowska-Krzebietke, A. Phytoplankton of artificial ecosystems—an attempt to assess water quality. Arch. Pol. Fish. 22, 81–96 (2014).

    Article 

    Google Scholar 

  • 28.

    Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).

    Article 

    Google Scholar 

  • 29.

    Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).

    Article 

    Google Scholar 

  • 30.

    Bucka, H. & Wilk-Woźniak, E. Pro-and Eukaryotic Algae of Phytoplankton Community in Water Bodies of Southern Poland (IOP PAN, 2007) ((in Polish)).

    Google Scholar 

  • 31.

    Siemińska, J. et al. Red list of the algae in Poland. In Red List of Plants and Fungi in Poland (eds Mirek, Z. et al.) 37–52 (W. Szafer Institute of Botany, Polish Academy of Science, 2006).

    Google Scholar 

  • 32.

    IUCN Red List of Threatened Species (ver. 2011.1). http://www.iucnredlist.org (2011).

  • 33.

    Krajewski, Ł et al. New data on the distribution and habitat conditions of stoneworts (Characeae) in Poland (2010–2012) including protected areas and lands involved in agri-environmental programmes. Water Environ. Rural Areas T15, Z 2(50), 65–85 (2015) ((in Polish with English summary)).

    Google Scholar 

  • 34.

    Urbaniak, J. & Gąbka, M. Polish Charophytes—An Illustrated Guide to Identification (Wydawnictwo Uniwersytetu Wrocławskiego, 2014).

    Google Scholar 

  • 35.

    Siong, K. & Asaeda, T. Does calcite encrustation in Chara provide a phosphorus nutrient sink?. J. Environ. Qual. 35, 490–494. https://doi.org/10.2134/jeq2005.0276 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Asaeda, T., Senavirathna, M. D. H. J., Kaneko, Y. & Rashid, M. H. Effect of calcium and magnesium on the growth and calcite encrustation of Chara fibrosa. Aquat. Bot. 113, 100–106. https://doi.org/10.1016/j.aquabot.2013.11.002 (2014).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Cassanova, M. T. & Brock, M. A. Charophyte occurance, seed banks and establishment in farm dams in New South Wales. Aust. J. Bot. 47, 437–444 (1999).

    Article 

    Google Scholar 

  • 38.

    Bueno, N. C. & Bicudo, C. E. M. Biomass and chemical composition of Nitella furcata subsp. mucronata var. mucronata f. oligospira (A. Braun) R. D. Wood (Chlorophyta, Characeae) in the littoral region of Ninféias Pond, São Paulo, Southeast Brazil. Rev. Bras. Bot. 3(3), 499–505 (2008).

    Google Scholar 

  • 39.

    Fontanini, D. et al. The phytochelatin synthase from Nitella mucronata (Charophyta) plays a role in the homeostatic control of iron (II)/(III). Plant Physiol. Biochem. 127, 88–96 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Mulderij, G., van Nes, E. & van Donk, E. Macrophyte–phytoplankton interactions: The relative importance of allelopathy versus other factors. Ecol. Model. 204, 85–92 (2007).

    Article 

    Google Scholar 

  • 41.

    Blindow, I., Hargeby, A. & Andersson, G. Alternative stable state in shallow lakes: What causes a shift? In The Structuring Role of Submerged Macrophytes in Lakes (eds Jeppesen, E. et al.) 353–360 (Springer, 1998).

    Chapter 

    Google Scholar 

  • 42.

    Höhne, L. et al. Environmental determinants of perch (Perca fluviatilis) growth in gravel pit lakes and the relative performance of simple versus complex ecological predictors. Ecol. Freshw. Fish 29, 557–573 (2020).

    Article 

    Google Scholar 

  • 43.

    Sabel, M., Eckmann, R., Jeppesen, E., Rösch, R. & Straile, D. Long-term changes in littoral fish community structure and resilience of total catch to reoligotrophication in a large, peri-alpine European lake. Freshw. Biol. 65, 1325–1336 (2020).

    Article 

    Google Scholar 

  • 44.

    APHA Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC (1999).

  • 45.

    Utermöhl, H. Guidance on the quantitative analysis of phytoplankton—methods. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 1–38 (1958) (in German).

    Google Scholar 

  • 46.

    Napiórkowska-Krzebietke, A. & Kobos, J. Assessment of the cell biovolume of phytoplankton widespread in coastal and inland water bodies. Water Res. 104, 532–546 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 47.

    Guiry, M. D. & Guiry, G. M. AlgaeBase; World-wide electronic publication. National University of Ireland: Galway, Ireland, 2008. http://www.algaebase.org. Accessed 4 Mar 2021.

  • 48.

    Pełechaty, M. & Pukacz, A. The Key to Determining Characeae Species in Rivers and Lakes. Environmental Protection Inspection (Monitoring Library of the Environment, 2008).

    Google Scholar 

  • 49.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 50.

    Pielou, E. C. An Introduction to Mathematical Ecology (Wiley, 1969).

    MATH 

    Google Scholar 

  • 51.

    Phillips, G. et al. Water Framework Directive Intercalibration Technical Report: Central Baltic Lake Phytoplankton Ecological Assessment Methods (Publications Office of the European Union, 2014).

    Google Scholar 

  • 52.

    Napiórkowska-Krzebietke, A., Chybowski, Ł, Prus, P. & Adamczyk, M. Assessment criteria and ecological classification of Polish lakes and rivers: Limitations and current state. In Polish River Basins and Lakes—Part II Biological Status and Water Management. The Handbook of Environmental Chemistry, Vol. 87 (eds Korzeniewska, E. & Harnisz, M.) 295–325 (Springer, 2020).

    Google Scholar 

  • 53.

    Burns, N., McIntosh, J. & Scholes, P. Strategies for Managing the Lakes of the Rotorua District, New Zealand. Lake Reserv. Manag. 21(1), 61–72 (2005).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Effects of wood ash and N fertilization on soil chemical properties and growth of Zelkova serrata across soil types

    Waging a two-pronged campaign against climate change