in

A novel system for intensive Diadema antillarum propagation as a step towards population enhancement

  • 1.

    Hughes, T. P., Reed, D. C. & Boyle, M. J. Herbivory on coral reefs: community structure following mass mortalities of sea urchins. J. Exp. Mar. Biol. Ecol. 113, 39–59 (1987).

    Article 

    Google Scholar 

  • 2.

    Jackson, J., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs (Global Coral Reef Monitoring Network, IUCN, 2014).

    Google Scholar 

  • 3.

    Goldberg, J. & Wilkinson, C. Global threats to coral reefs: coral bleaching, global climate change, disease, predator plagues, and invasive species. Status Coral Reefs World 2004(1), 67–92 (2004).

    Google Scholar 

  • 4.

    Abelson, A. et al. Upgrading marine ecosystem restoration using ecological-social concepts. Bioscience 66, 156–163 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Conservation International. Economic values of coral reefs, mangroves, and seagrasses: A global compilation. Center for Applied Biodiversity Science, Conservation International (2008).

  • 6.

    Rocha, J., Peixe, L., Gomes, N. C. M. & Calado, R. Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9, 1860–1886 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Storlazzi, C. D. et al. Rigorously Valuing the Role of U. S. Coral Reefs in Coastal Hazard Risk Reduction. No. 2019–1027. US Geological Survey (2019).

  • 8.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Greenstein, B. J., Curran, H. A. & Pandolfi, J. M. Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a pleistocene perspective. Coral Reefs 17, 249–261 (1998).

    Article 

    Google Scholar 

  • 12.

    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Osinga, R. et al. The biology and economics of coral growth. Mar. Biotechnol. 13, 658–671 (2011).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Leal, M. C., Ferrier-Pagès, C., Petersen, D. & Osinga, R. Coral aquaculture: applying scientific knowledge to ex situ production. Rev. Aquac. 8, 136–153 (2016).

    Article 

    Google Scholar 

  • 15.

    Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 2016, e2597 (2016).

    Article 

    Google Scholar 

  • 16.

    Barton, J. A., Willis, B. L. & Hutson, K. S. Coral propagation: a review of techniques for ornamental trade and reef restoration. Rev. Aquac. 9, 238–256 (2017).

    Article 

    Google Scholar 

  • 17.

    Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Rinkevich, B. Restoration strategies for coral reefs damaged by recreational activities: the use of sexual and asexual recruits. Restor. Ecol. 3, 241–251 (1995).

    Article 

    Google Scholar 

  • 19.

    Young, C. N., Schopmeyer, S. A. & Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).

    Article 

    Google Scholar 

  • 20.

    Rinkevich, B. Rebuilding coral reefs: does active reef restoration lead to sustainable reefs?. Curr. Opin. Environ. Sustain. 7, 28–36 (2014).

    Article 

    Google Scholar 

  • 21.

    Patterson, J. T. The growing role of aquaculture in ecosystem restoration. Restor. Ecol. 27, 938–941 (2019).

    Article 

    Google Scholar 

  • 22.

    Schopmeyer, S. A. et al. In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event. Restor. Ecol. 20, 696–703 (2012).

    Article 

    Google Scholar 

  • 23.

    Miller, M. W., Kerr, K. & Williams, D. E. Reef-scale trends in Florida Acropora spp. abundance and the effects of population enhancement. PeerJ 2016, e2523 (2016).

    Article 

    Google Scholar 

  • 24.

    Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Ogden, J. Carbonate-sediment production by parrot fish and sea urchins on Caribbean reefs: reef biota. Stud. Geol. 4, 281–288 (1977).

    CAS 

    Google Scholar 

  • 26.

    Sammarco, P. W. Echinoid grazing as a structuring force in coral communities: whole reef manipulations. J. Exp. Mar. Biol. Ecol. 61, 31–55 (1982).

    Article 

    Google Scholar 

  • 27.

    Foster, S. A. The relative impacts of grazing by Caribbean coral reef fishes and Diadema: effects of habitat and surge. J. Exp. Mar. Biol. Ecol. 105, 1–20 (1987).

    Article 

    Google Scholar 

  • 28.

    Ogden, J. C. & Lobel, P. S. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fishes 3, 49–63 (1978).

    Article 

    Google Scholar 

  • 29.

    Perry, C. T. et al. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proc. R. Soc. B Biol. Sci. 281, 20142018 (2014).

    Article 

    Google Scholar 

  • 30.

    Precht, L. & Precht, W. The sea urchin Diadema antillarum—keystone herbivore or redundant species?. PeerJ PrePrints 3, e1565v1 (2015).

    Google Scholar 

  • 31.

    Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Lessios, H. A. The Great Diadema antillarum die-off: 30 years later. Ann. Rev. Mar. Sci. 8, 267–283 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Lessios, H. A., Glynn, P. W. & Robertson, D. R. Mass mortalities of coral reef organisms. Science 222, 715 (1983).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Lessios, H. A., Robertson, D. R. & Cubit, J. D. Spread of Diadema mass mortality through the Caribbean. Science 226, 335–337 (1984).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Lessios, H. A. et al. Mass mortality of Diadema antillarum on the Caribbean coast of Panama. Coral Reefs 3, 173–182 (1984).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Bak, R., Carpay, M. & de Ruyter van Steveninck, E. Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curagao. Mar. Ecol. Prog. Ser. 17, 105–108 (1984).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Hughes, T. P. Mass mortality of the echinoid Diadema antillarum Philippi in Jamaica. Bull. Mar. Sci. 36, 377–384 (1985).

    Google Scholar 

  • 38.

    Hunte, W., Côté, I. & Tomascik, T. On the dynamics of the mass mortality of Diadema antillarum in Barbados. Coral Reefs 4, 135–139 (1986).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Lessios, H. A. Mass mortality of Diadema antillarum in the Caribbean: what have we learned?. Annu. Rev. Ecol. Syst. 19, 371–393 (1988).

    Article 

    Google Scholar 

  • 40.

    Carpenter, R. C. Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. Proc. Natl. Acad. Sci. 85, 511–514 (1988).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Carpenter, R. C. Mass mortality of Diadema antillarum—II. Effects on population densities and grazing intensity of parrotfishes and surgeonfishes. Mar. Biol. 104, 79–86 (1990).

    Article 

    Google Scholar 

  • 42.

    Carpenter, R. C. Mass mortality of Diadema antillarum—I. Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar. Biol. 104, 67–77 (1990).

    Article 

    Google Scholar 

  • 43.

    Levitan, D. R. Algal-urchin biomass responses following mass mortality of Diadema antillarum Philippi at Saint John, U.S. Virgin Islands. J. Exp. Mar. Biol. Ecol. 119, 167–178 (1988).

    Article 

    Google Scholar 

  • 44.

    Lessios, H. A. Diadema antillarum 10 years after mass mortality: still rare, despite help from a competitor. Proc. R. Soc. B Biol. Sci. 259, 331–337 (1995).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Miller, R. J., Adams, A. J., Ogden, N. B., Ogden, J. C. & Ebersole, J. P. Diadema antillarum 17 years after mass mortality: is recovery beginning on St. Croix?. Coral Reefs 22, 181–187 (2003).

    Article 

    Google Scholar 

  • 46.

    National Marine Fisheries Service. Recovery plan for elkhorn coral (Acropora palmata) and staghorn corals (A. cervicornis). National Oceanic and Atmospheric Administration (2015).

  • 47.

    Rogers, A. & Lorenzen, K. Does slow and variable recovery of Diadema antillarum on Caribbean fore-reefs reflect density-dependent habitat selection?. Front. Mar. Sci. 3, 63 (2016).

    Article 

    Google Scholar 

  • 48.

    Eckert, G. Larval development, growth and morphology of the sea urchin Diadema antillarum. Bull. Mar. Sci. 63, 443–451 (1998).

    Google Scholar 

  • 49.

    Leber, K. et al. Developing restoration methods to aid in recovery of a key herbivore, Diadema antillarum, on Florida coral reefs. Mote Marine Laboratory Technical Report No. 1347 (2009).

  • 50.

    Moe, M. Breeding the West Indian sea egg: Tripneustes ventricosus. CORAL Mag. 11, 80–94 (2014).

    Google Scholar 

  • 51.

    Harrold, C., Lisin, S., Light, K. H. & Tudor, S. Isolating settlement from recruitment of sea urchins. J. Exp. Mar. Biol. Ecol. 147, 81–94 (1991).

    Article 

    Google Scholar 

  • 52.

    Lambert, D. M. & Harris, L. G. Larval settlement of the green sea urchin, Strongylocentrotus droebachiensis, in the southern Gulf of Maine. Invertebr. Biol. 119, 403–409 (2005).

    Article 

    Google Scholar 

  • 53.

    McBride, S. C. Sea urchin aquaculture. Am. Fish. Soc. Symp. 2005, 179–208 (2005).

    Google Scholar 

  • 54.

    Mos, B., Cowden, K. L., Nielsen, S. J. & Dworjanyn, S. A. Do cues matter? Highly inductive settlement cues don’t ensure high post-settlement survival in sea urchin aquaculture. PLoS ONE 6, e28054 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Bielmyer, G. K., Brix, K. V., Capo, T. R. & Grosell, M. The effects of metals on embryo-larval and adult life stages of the sea urchin, Diadema antillarum. Aquat. Toxicol. 74, 254–263 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Nadella, S. R. et al. Toxicity of lead and zinc to developing mussel and sea urchin embryos: critical tissue residues and effects of dissolved organic matter and salinity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 158, 72–83 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Dautov, S. S. & Dautova, T. N. The larvae of Diadema setosum (Leske, 1778) (Camarodonta: Diadematidae) from South China Sea. Invertebr. Reprod. Dev. 60, 290–296 (2016).

    Article 

    Google Scholar 

  • 58.

    Huggett, M. J., King, C. K., Williamson, J. E. & Steinberg, P. D. Larval development and metamorphosis of the Australian diadematid sea urchin Centrostephanus rodgersii. Invertebr. Reprod. Dev. 47, 197–204 (2005).

    Article 

    Google Scholar 

  • 59.

    Dautov, S. S. The embryological and larval development of the sea urchin Diadema savignyi (Audouin, 1809) (Diadematoida: Diadematidae) from the South China Sea. Mar. Biol. Res. 16, 166–176 (2020).

    Article 

    Google Scholar 

  • 60.

    Harris, L. G. & Eddy, S. D. Sea urchin ecology and biology. In Echinoderm Aquaculture (eds Brown, N. P. & Eddy, S. D.) 1–24 (Wiley, 2015). https://doi.org/10.1002/9781119005810.ch1.

    Google Scholar 

  • 61.

    Westbrook, C. E. et al. Survivorship and feeding preferences among size classes of outplanted sea urchins, Tripneustes gratilla, and possible use as biocontrol for invasive alien algae. PeerJ 2015, e1235 (2015).

    Article 

    Google Scholar 

  • 62.

    Neilson, B. J., Wall, C. B., Mancini, F. T. & Gewecke, C. A. Herbivore biocontrol and manual removal successfully reduce invasive macroalgae on coral reefs. PeerJ 2018, e5332 (2018).

    Article 

    Google Scholar 

  • 63.

    Palmer, L. The shedding reaction in Arbacia punctulata. Physiol. Zool. 10, 352–367 (1937).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Hammer, H., Powell, M. & Watts, S. Species Profile: Sea Urchins of the Southern Region 1–6 (Southern Regional Aquaculture Center, 2013).

    Google Scholar 

  • 65.

    Luis, O., Delgado, F. & Gago, J. Year-round captive spawning performance of the sea urchin Paracentrotus lividus: relevance for the use of its larvae as live feed. Aquat. Liv. Resour. 18, 45–54 (2005).

    Article 

    Google Scholar 

  • 66.

    Gago, J. & Luís, O. J. Comparison of spawning induction techniques on Paracentrotus lividus (Echinodermata: Echinoidea) broodstock. Aquacult. Int. 19, 181–191 (2011).

    Article 

    Google Scholar 

  • 67.

    Watts, S. A., Lawrence, A. L. & Lawrence, J. M. Nutrition. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 155–169 (Elsevier, 2013).

    Google Scholar 

  • 68.

    Walker, C. W. & Lesser, M. P. Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis implications for aquaculture. Mar. Biol. 132, 663–676 (1998).

    Article 

    Google Scholar 

  • 69.

    Pearse, J. S., Eernisse, D. J., Pearse, V. B. & Beauchamp, K. A. Photoperiodic regulation of gametogenesis in sea stars, with evidence for an annual calendar independent of fixed daylength. Integr. Comp. Biol. 26, 417–431 (1986).

    Google Scholar 

  • 70.

    Lorenzen, K., Leber, K. M. & Blankenship, H. L. Responsible approach to marine stock enhancement: an update. Rev. Fish. Sci. 18, 189–210 (2010).

    Article 

    Google Scholar 

  • 71.

    Chandler, L. M., Walters, L. J., Sharp, W. C. & Hoffman, E. A. Genetic structure of natural and broodstock populations of the long-spined sea urchin, Diadema antillarum, throughout the Florida Keys. Bull. Mar. Sci. 93, 881–889 (2017).

    Article 

    Google Scholar 

  • 72.

    Tringali, M. D. et al. Genetic Policy for the Release of Finfishes in Florida. Florida Fish and Wildlife Conservation Commission (2007).

  • 73.

    Lorenzen, K. Understanding and managing enhancements: why fisheries scientists should care. J. Fish Biol. 85, 1807–1829 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Pearce, C. M., Daggett, T. L. & Robinson, S. M. C. Optimizing prepared feed ration for gonad production of the green sea urchin Strongylocentrotus droebachiensis. J. World Aquac. Soc. 33, 268–277 (2002).

    Article 

    Google Scholar 

  • 75.

    Hammer, H. S. et al. Effect of feed protein and carbohydrate levels on feed intake, growth, and gonad production of the sea urchin, Lytechinus variegatus. J. World Aquac. Soc. 43, 145–158 (2012).

    Article 

    Google Scholar 

  • 76.

    Carboni, S., Hughes, A. D., Atack, T., Tocher, D. R. & Migaud, H. Influence of broodstock diet on somatic growth, fecundity, gonad carotenoids and larval survival of sea urchin. Aquac. Res. 46, 969–976 (2015).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Liu, H. et al. The effect of diet type on growth and fatty acid composition of the sea urchin larvae, II. Psammechinus miliaris (Gmelin). Aquaculture 264, 263–278 (2007).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Brundu, G. et al. Effects of on-demand feeding on sea urchin larvae (Paracentrotus lividus; Lamarck, 1816), development, survival and microalgae utilization. Aquac. Res. 48, 1550–1560 (2017).

    Article 

    Google Scholar 

  • 79.

    Capo, T., Boyd, A. E., Miller, M. W., Sukrhaj, N. C. & Szmant, A. Non-invasive Spawning of Captive Diadema antillarum (Philippi) Under Photo-Thermal Control (CRC Press, 2003).

    Google Scholar 

  • 80.

    Reuter, K. E. & Levitan, D. R. Influence of sperm and phytoplankton on spawning in the echinoid Lytechinus variegatus. Biol. Bull. 219, 198–206 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 81.

    Muthiga, N. A. & McClanahan, T. R. Diadema. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 257–274 (Elsevier, 2013).

    Google Scholar 

  • 82.

    Lewis, J. B. Growth and breeding in the tropical echinoid Diadema antillarum Philippi. Bull. Mar. Sci. 16, 151–158 (1966).

    Google Scholar 

  • 83.

    Bauer, J. C. Growth, aggregation, and maturation in the echinoid, Diadema antillarum. Bull. Mar. Sci. 26, 273–277 (1976).

    ADS 

    Google Scholar 

  • 84.

    Iliffe, T. M. & Pearse, J. S. Annual and lunar reproductive rhythms of the sea urchin, Diadema antillarum (Philippi) in Bermuda. Int. J. Invertebr. Reprod. 5, 139–148 (1982).

    Article 

    Google Scholar 

  • 85.

    Randall, J. E., Schroeder, R. E. & Starck, W. A. I. Notes on the biology of the echinoid Diadema antillarum. Caribb. J. Sci. 1, 421–433. https://doi.org/10.1126/science.1.10.263 (1964).

    Article 

    Google Scholar 

  • 86.

    Lessios, H. A. Reproductive periodicity of the echinoids Diadema and Echinometra on the two coasts of Panama. J. Exp. Mar. Biol. Ecol. 50, 47–61 (1981).

    Article 

    Google Scholar 

  • 87.

    Levitan, D. R. Asynchronous spawning and aggregative behavior in the sea urchin Diadema antillarum (Philippi). Direct 76, 181–186 (1988).

    Google Scholar 

  • 88.

    Hodin, J. et al. Culturing echinoderm larvae through metamorphosis. Methods Cell Biol. 150, 125–169 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 89.

    Metaxas, A. Larval ecology of echinoids. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 69–81 (Elsevier, 2013).

    Google Scholar 

  • 90.

    Grünbaum, D. & Strathmann, R. R. Form, performance and trade-offs in swimming and stability of armed larvae. J. Mar. Res. 61, 659–691 (2003).

    Article 

    Google Scholar 

  • 91.

    Williamson, J. E. Sea urchin aquaculture in Australia. In Echinoderm Aquaculture (eds Brown, N. P. & Eddy, S. D.) 225–243 (Wiley, 2015). https://doi.org/10.1002/9781119005810.ch10.

    Google Scholar 

  • 92.

    Swanson, R. L. et al. Dissolved histamine: a potential habitat marker promoting settlement and metamorphosis in sea urchin larvae. Mar. Biol. 159, 915–925 (2012).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Mos, B., Byrne, M. & Dworjanyn, S. A. Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification. Aquaculture 528, 735618 (2020).

    CAS 
    Article 

    Google Scholar 

  • 94.

    Radenac, G., Fichet, D. & Miramand, P. Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar. Environ. Res. 51, 151–166 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 95.

    Phillips, B. M. et al. Toxicity of cadmium–copper–nickel–zinc mixtures to larval purple sea urchins (Strongylocentrotus purpuratus). Bull. Environ. Contam. Toxicol. 70, 592–599 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 96.

    USEPA. Ambient Water Quality Criteria for Silver. U.S. Environmental Protection Agency (1980).

  • 97.

    USEPA. Draft Update of Ambient Water Quality Criteria for Copper. U.S. Environmental Protection Agency (2003).

  • 98.

    Martins, C. I. M., Pistrin, M. G., Ende, S. S. W., Eding, E. H. & Verreth, J. A. J. The accumulation of substances in recirculating aquaculture systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio. Aquaculture 291, 65–73 (2009).

    Article 

    Google Scholar 

  • 99.

    Downs, C. A. et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 70, 265–288 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 100.

    Seixas, P., Coutinho, P., Ferreira, M. & Otero, A. Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. J. Exp. Mar. Biol. Ecol. 381, 1–9 (2009).

    Article 

    Google Scholar 

  • 101.

    Bendich, A. Recent advances in clinical research involving carotenoids. Pure Appl. Chem. 66, 1017–1024 (1994).

    CAS 
    Article 

    Google Scholar 

  • 102.

    Krinsky, N. I. The antioxidant and biological properties of the carotenoids. Ann. N. Y. Acad. Sci. 854, 443–447 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 103.

    Kelly, M. S. & Symonds, R. C. Carotenoids in sea urchins. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 171–177 (Elsevier, 2013).

    Google Scholar 

  • 104.

    Cárcamo, P. F., Candia, A. I. & Chaparro, O. R. Larval development and metamorphosis in the sea urchin Loxechinus albus (Echinodermata: Echinoidea): effects of diet type and feeding frequency. Aquaculture 249, 375–386 (2005).

    Article 

    Google Scholar 

  • 105.

    Carboni, S. et al. Evaluation of flow through culture technique for commercial production of sea urchin (Paracentrotus lividus) larvae. Aquac. Res. 45, 768–772 (2014).

    Article 

    Google Scholar 

  • 106.

    Takahashi, Y., Itoh, K., Ishii, M., Suzuki, M. & Itabashi, Y. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol. 140, 763–771 (2002).

    CAS 
    Article 

    Google Scholar 

  • 107.

    Gaylord, B., Hodin, J. & Ferner, M. C. Turbulent shear spurs settlement in larval sea urchins. Proc. Natl. Acad. Sci. U. S. A. 110, 6901–6906 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Gosselin, L. A. & Qian, P. Y. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser. 146, 265–282 (1997).

    ADS 
    Article 

    Google Scholar 

  • 109.

    Miller, B. A. & Emlet, R. B. Development of newly metamorphosed juvenile sea urchins (Strongylocentrotus franciscanus and S. purpuratus): morphology, the effects of temperature and larval food ration, and a method for determining age. J. Exp. Mar. Biol. Ecol. 235, 67–90 (1999).

    Article 

    Google Scholar 

  • 110.

    Byrne, M., Sewell, M. A. & Prowse, T. A. A. Nutritional ecology of sea urchin larvae: influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Funct. Ecol. 22, 643–648 (2008).

    Article 

    Google Scholar 

  • 111.

    Feehan, C. J., Brown, M. S., Sharp, W. C., Lauzon-Guay, J.-S. & Adams, D. K. Fertilization limitation of Diadema antillarum on coral reefs in the Florida Keys. Ecology 97, 1897–1904 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 112.

    Miller, M. W., Kramer, K. L., Williams, S. M., Johnston, L. & Szmant, A. M. Assessment of current rates of Diadema antillarum larval settlement. Coral Reefs 28, 511–515 (2009).

    ADS 
    Article 

    Google Scholar 

  • 113.

    Vermeij, M. J. A., Debrot, A. O., van der Hal, N., Bakker, J. & Bak, R. P. M. Increased recruitment rates indicate recovering populations of the sea urchin Diadema antillarum on Curaçao. Bull. Mar. Sci. 86, 719–725 (2010).

    Google Scholar 

  • 114.

    Miller, R. J., Adams, A. J., Ebersole, J. P. & Ruiz, E. Evidence for positive density-dependent effects in recovering Diadema antillarum populations. J. Exp. Mar. Biol. Ecol. 349, 215–222 (2007).

    Article 

    Google Scholar 

  • 115.

    Hunte, W. & Younglao, D. Recruitment and population recovery of Diadema antillarum (Echinodermata; Echinoidea) in Barbados. Mar. Ecol. Prog. Ser. 45, 109–119 (1988).

    ADS 
    Article 

    Google Scholar 

  • 116.

    Weil, E., Losada, F. & Bone, D. Spatial variations in density and size of the echinoid Diadema antillarum Philippi on some Venezuelan coral reefs. Bijdragen tot de Dierkunde 54, 73–82 (1984).

    Article 

    Google Scholar 

  • 117.

    Lee, S. C. Habitat complexity and consumer-mediated positive feedbacks on a Caribbean coral reef. Oikos 112, 442–447 (2006).

    Article 

    Google Scholar 

  • 118.

    Feehan, C. J. & Scheibling, R. E. Effects of sea urchin disease on coastal marine ecosystems. Mar. Biol. 161, 1467–1485 (2014).

    CAS 
    Article 

    Google Scholar 

  • 119.

    Dame, E. A. Assessing the effect of artificial habitat structure on translocation of the long-spined sea urchin, Diadema antillarum, in Curaçao (Netherlands Antilles). Bull. Mar. Sci. 82, 247–254 (2008).

    ADS 

    Google Scholar 

  • 120.

    Sharp, W. Assessing the use of artificial structures to enhance the survival rates of long-spined sea uchins on the reef tract of the Florida Keys. Florida Fish and Wildlife Conservation Commission (2014).

  • 121.

    Rogers, A. & Lorenzen, K. Recovery of Diadema antillarum and the potential for active rebuilding measures: modelling population dynamics. In Proceedings of the 11th International Coral Reef Symposium 7–11 (2008).

  • 122.

    Creswell, R. L. Developing echinoderm culture for consumption and stock enhancement in the Caribbean. FAO Fish. Aquac. Proc. 19, 141–145 (2011).

    Google Scholar 


  • Source: Ecology - nature.com

    Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor

    3Q: The socio-environmental complexities of renewable energy