in

A polyphagous, tropical insect herbivore shows strong seasonality in age-structure and longevity independent of temperature and host availability

  • 1.

    Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 17, 67–88 (1986).

    Article 

    Google Scholar 

  • 2.

    Kishimoto-Yamada, K. & Itioka, T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)?. Entomol. Sci. 18, 407–419. https://doi.org/10.1111/ens.12134 (2015).

    Article 

    Google Scholar 

  • 3.

    dos Santos, J. P. D., Iserhard, C. A., Carreira, J. Y. O. & Freitas, A. V. L. Monitoring fruit-feeding butterfly assemblages in two vertical strata in seasonal Atlantic Forest: Temporal species turnover is lower in the canopy. J. Trop. Ecol. 33, 345–355. https://doi.org/10.1017/s0266467417000323 (2017).

    Article 

    Google Scholar 

  • 4.

    Bonebrake, T. C., Ponisio, L. C., Boggs, C. L. & Ehrlich, P. R. More than just indicators: A review of tropical butterfly ecology and conservation. Biol. Conser. 143, 1831–1841 (2010).

    Article 

    Google Scholar 

  • 5.

    Molleman, F. Moving beyond phenology: New directions in the study of temporal dynamics of tropical insect communities. Curr. Sci. 114, 982 (2018).

    Article 

    Google Scholar 

  • 6.

    Frith, C. B. & Frith, D. W. Seasonality of insect abundance in an Australian upland tropical rainforest. Aust. J. Ecol. 10, 237–248 (1985).

    Article 

    Google Scholar 

  • 7.

    Braby, M. Seasonal-changes in relative abundance and spatial-distribution of Australian lowland tropical satyrine butterflies. Aust. J. Zool. 43, 209–229 (1995).

    Article 

    Google Scholar 

  • 8.

    Muniz, D. G., Freitas, A. V. & Oliveira, P. S. Phenological relationships of Eunica bechina (Lepidoptera: Nymphalidae) and its host plant, Caryocar brasiliense (Caryocaraceae), in a Neotropical savanna. Stud. Neotrop. Fauna Environ. 47, 111–118 (2012).

    Article 

    Google Scholar 

  • 9.

    Wolda, H. Insect seasonality: Why?. Annu. Rev. Ecol. Syst. 19, 1–18 (1988).

    Article 

    Google Scholar 

  • 10.

    Yonow, T. et al. Modelling the population dynamics of the Queensland fruit fly, Bactrocera (Dacus) tryoni: A cohort-based approach incorporating the effects of weather. Ecol. Model. 173, 9–30. https://doi.org/10.1016/s0304-3800(03)00306-5 (2004).

    Article 

    Google Scholar 

  • 11.

    Baker, R. et al. Bactrocera dorsalis pest report to support ranking of EU candidate priority pests. EFSA https://doi.org/10.5281/zenodo.2786921 (2019).

  • 12.

    Valtonen, A. et al. Tropical phenology: Bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere https://doi.org/10.1890/es12-00338.1 (2013).

    Article 

    Google Scholar 

  • 13.

    Hernández, C. X. P. & Caballero, S. Z. Temporal variation in the diversity of Cantharidae (Coleoptera), in seven assemblages in tropical dry forest in Mexico. Trop. Conserv. Sci. 9, 439–464 (2016).

    Article 

    Google Scholar 

  • 14.

    Marchioro, C. A. & Foerster, L. A. Biotic factors are more important than abiotic factors in regulating the abundance of Plutella xylostella L., Southern Brazil. Rev. Bras. Entomol. 60, 328–333 (2016).

    Article 

    Google Scholar 

  • 15.

    Meats, A. The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, Australia. Proc. Ecol. Soc. Aust. 11, 1–61 (1981).

    Google Scholar 

  • 16.

    Sutherst, R. W. & Yonow, T. The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Aust. J. Agric. Res. 49, 935–954 (1998).

    Article 

    Google Scholar 

  • 17.

    Choudhary, J. S. et al. Potential changes in number of generations of oriental fruit fly, Bactrocera Dorsalis (Diptera: Tephritidae) on mango in India in response to climate change scenarios. J. Agrometeorol. 19, 200–206 (2017).

    Google Scholar 

  • 18.

    Clarke, A. R. Biology and Management of Bactrocera and Related Fruit Flies (CABI, 2019).

    Book 

    Google Scholar 

  • 19.

    Sakai, S. et al. Plant reproductive phenology over four years including an episode of general flowering in a lowland dipterocarp forest, Sarawak, Malaysia. Am. J. Bot. 86, 1414–1436 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Land, K. C., Yang, Y. & Zeng, Y. Mathematical demography. Handbook of Population 659–717 (Springer, 2005).

  • 21.

    Carey, J. R. & Roach, D. A. Biodemography: An Introduction to Concepts and Methods (Princeton University Press, 2020).

    MATH 
    Book 

    Google Scholar 

  • 22.

    Carey, J. R. Applied Demography for Biologists: With Special Emphasis on Insects (Oxford University Press, 1993).

    Google Scholar 

  • 23.

    Carey, J. R. Insect biodemography. Annu. Rev. Entomol. 46, 79–110 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Southwood, T. R. E. Ecological Methods: With Particular Reference to the Study of Insect Populations. xviii + 391 (Methuen, London, 1966).

  • 25.

    Udevitz, M. S. & Ballachey, B. E. Estimating survival rates with age-structure data. J. Wildl. Manag. 62, 779–792 (1998).

    Article 

    Google Scholar 

  • 26.

    Müller, H. G. et al. Demographic window to aging in the wild: constructing life tables and estimating survival functions from marked individuals of unknown age. Aging Cell 3, 125–131 (2004).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Zajitschek, F., Zajitschek, S. & Bonduriansky, R. Senescence in wild insects: Key questions and challenges. Funct. Ecol. 34, 26–37 (2020).

    Article 

    Google Scholar 

  • 28.

    Carey, J. R. et al. Age structure changes and extraordinary lifespan in wild medfly populations. Aging Cell 7, 426–437. https://doi.org/10.1111/j.1474-9726.2008.00390.x (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Rao, A. S. S. & Carey, J. R. Generalization of Carey’s equality and a theorem on stationary population. J. Math. Biol. 71, 583–594 (2015).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 30.

    Carey, J. R. Biodemography of the Mediterranean fruit fly: Aging, longevity and adaptation in the wild. Exp. Gerontol. 46, 404–411. https://doi.org/10.1016/j.exger.2010.09.009 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 31.

    Muller, H. G., Wang, J. L., Yu, W., Delaigle, A. & Carey, J. R. Survival and aging in the wild via residual demography. Theor. Popul. Biol. 72, 513–522. https://doi.org/10.1016/j.tpb.2007.07.003 (2007).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 32.

    Vaupel, J. Life lived and left: Carey’s equality. Demogr Res 20, 7–10. https://doi.org/10.4054/DemRes.2009.20.3 (2009).

    Article 

    Google Scholar 

  • 33.

    Carey, J. R., Papadopoulos, N. T., Papanastasiou, S., Diamantidis, A. & Nakas, C. T. Estimating changes in mean population age using the death distributions of live-captured medflies. Ecol. Entomol. 37, 359–369. https://doi.org/10.1111/j.1365-2311.2012.01372.x (2012).

    Article 

    Google Scholar 

  • 34.

    Papadopoulos, N. T. et al. Seasonality of post-capture longevity in a medically-important mosquito (Culex pipiens). Front. Ecol. Evol https://doi.org/10.3389/fevo.2016.00063 (2016).

    Article 

    Google Scholar 

  • 35.

    Behrman, E. L., Watson, S. S., O’Brien, K. R., Heschel, M. S. & Schmidt, P. S. Seasonal variation in life history traits in two Drosophila species. J Evol Biol 28, 1691–1704. https://doi.org/10.1111/jeb.12690 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Drew, R. A. The tropical fruit flies (Diptera: Tephritidae: Dacinae) of the Australasian and Oceanian regions. Mem. Queensland Museum 26, 1 (1989).

    Google Scholar 

  • 37.

    Dominiak, B. C. Components of a systems approach for the management of Queensland fruit fly Bactrocera tryoni (Froggatt) in a post dimethoate fenthion era. Crop prot. 116, 56–67 (2019).

    Article 

    Google Scholar 

  • 38.

    Boulter, S. L., Kitching, R. L. & Howlett, B. G. Family, visitors and the weather: patterns of flowering in tropical rain forests of northern Australia. J. Ecol. 94, 369–382. https://doi.org/10.1111/j.1365-2745.2005.01084.x (2006).

    Article 

    Google Scholar 

  • 39.

    Dominiak, B. C. & Mapson, R. Revised distribution of Bactrocera tryoni in eastern Australia and effect on possible incursions of Mediterranean fruit fly: Development of Australia’s eastern trading block. J. Econ. Entomol. 110, 2459–2465 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Bateman, M. Adaptations to temperature in geographic races of the Queensland fruit fly Dacus (Strumenta) tryoni. Aust. J. Zool. 15, 1141–1161 (1967).

    Article 

    Google Scholar 

  • 41.

    Bateman, M. Determinants of abundance in a population of the Queensland fruit fly. In: Southwood, T.R.E. (ed.) Insect abundance 119–131 (Blackwell Scientific Publications, London, 1968).

  • 42.

    Drew, R., Zalucki, M. & Hooper, G. Ecological studies of eastern Australian fruit flies (Diptera: Tephritidae) in their endemic habitat. Oecologia 64, 267–272 (1984).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Muthuthantri, S., Maelzer, D., Zalucki, M. P. & Clarke, A. R. The seasonal phenology of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) in Queensland. Aust. J. Entomol. 49, 221–233. https://doi.org/10.1111/j.1440-6055.2010.00759.x (2010).

    Article 

    Google Scholar 

  • 44.

    Lloyd, A. C. et al. Area-wide management of fruit flies (Diptera: Tephritidae) in the Central Burnett district of Queensland. Aust. J. Crop Prot. 29, 462–469. https://doi.org/10.1016/j.cropro.2009.11.003 (2010).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Pritchard, G. The ecology of a natural population of Queensland fruit fly, Dacus tryoni III. The maturation of female flies in relation to temperature. Aust. J. Zool. 18, 77–89 (1970).

    Article 

    Google Scholar 

  • 46.

    Clarke, A. R., Merkel, K., Hulthen, A. D. & Schwarzmueller, F. Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) overwintering: an overview. Aust. Entomol. 58, 3–8. https://doi.org/10.1111/aen.12369 (2019).

    Article 

    Google Scholar 

  • 47.

    Merkel, K. et al. Temperature effects on “overwintering” phenology of a polyphagous, tropical fruit fly (Tephritidae) at the subtropical/temperate interface. J. Appl. Entomol. 143, 754–765 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Raghu, S., Clarke, A. R., Drew, R. A. & Hulsman, K. Impact of habitat modification on the distribution and abundance of fruit flies (Diptera: Tephritidae) in Southeast Queensland. Popul. Ecol. 42, 153–160 (2000).

    Article 

    Google Scholar 

  • 49.

    Novotny, V., Clarke, A. R., Drew, R. A., Balagawi, S. & Clifford, B. Host specialization and species richness of fruit flies (Diptera: Tephritidae) in a New Guinea rain forest. J. Trop. Ecol. 21, 67–77 (2005).

    Article 

    Google Scholar 

  • 50.

    Fletcher, B. Temperature-regulated changes in the ovaries of overwintering females of the Queensland Fruit Fly, Dacus tryoni. Aust. J. Zool. 23, 91–102 (1975).

    Article 

    Google Scholar 

  • 51.

    Meats, A. & Fay, H. The effect of acclimation on mating frequency and mating competitiveness in the Queensland fruit fly, Dacus tryoni, in optimal and cool mating regimes. Physiol. Entomol. 1, 207–212 (1976).

    Article 

    Google Scholar 

  • 52.

    Balagawi, S. Comparative ecology of Bactrocera Cucumis (French) and Bactrocera Tryoni (Froggatt) (Diptera: Tephritidae)—Understanding the life history consequences of host selection and oviposition behavior. Unpublished Thesis, Griffith University (2006).

  • 53.

    Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. 105, 2498–2503 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Carey, J. R., Liedo, P., Müller, H.-G., Wang, J.-L. & Vaupel, J. W. Dual modes of aging in Mediterranean fruit fly females. Science 281, 996–998 (1998).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Fanson, B. G. & Taylor, P. W. Protein: carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast: Sugar ratios. Age 34, 1361–1368 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    McElderry, R. M. Seasonal life history trade-offs in two leafwing butterflies: Delaying reproductive development increases life expectancy. J. Insect Physiol. 87, 30–34 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Werfel, J., Ingber, D. E. & Bar-Yam, Y. Theory and associated phenomenology for intrinsic mortality arising from natural selection. PLoS ONE 12, e0173677 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Kozeretska, I. A., Serga, S. V., Koliada, A. K. & Vaiserman, A. M. Epigenetic regulation of longevity in insects. Adv. Insect Physiol. 53, 87–114 (2017).

    Article 

    Google Scholar 

  • 59.

    Meats, A. Critical periods for developmental acclimation to cold in the Queensland fruit fly. Dacus tryoni. J. Insect Physiol. 29, 943–946 (1983).

    Article 

    Google Scholar 

  • 60.

    Kumaran, N. et al. Plant-mediated female transcriptomic changes post-mating in a tephritid fruit fly, Bactrocera tryoni. Genome Biol. Evol. 10, 94–107 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Dominiak, B. C., Sundaralingam, S., Jiang, L., Jessup, A. & Barchia, I. Production levels and life history traits of mass reared Queensland fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) during 1999/2002 in Australia. Plant Prot. Q. 23, 131–135 (2008).

    Google Scholar 

  • 62.

    Fanson, B., Sundaralingam, S., Jiang, L., Dominiak, B. & D’arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159 (2014).

    Article 

    Google Scholar 

  • 63.

    Papadopoulos, N., Katsoyannos, B., Carey, J. & Kouloussis, N. Seasonal and annual occurrence of the Mediterranean fruit fly (Diptera: Tephritidae) in northern Greece. Ann. Entomol. Soc. Am. 94, 41–50 (2001).

    Article 

    Google Scholar 

  • 64.

    Brakefield, P. M. & Reitsma, N. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Entomol. 16, 291–303 (1991).

    Article 

    Google Scholar 

  • 65.

    Molleman, F., Zwaan, B., Brakefield, P. & Carey, J. Extraordinary long life spans in fruit-feeding butterflies can provide window on evolution of life span and aging. Exp. Gerontol. 42, 472–482 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Denlinger, D. L. Dormancy in tropical insects. Ann. Rev. Entomol 31, 239–264 (1986).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Canzano, A. A., Jones, R. E. & Seymour, J. E. Diapause termination in two species of tropical butterfly, Euploea core (Cramer) and Euploea sylvester (Fabricius) (Lepidoptera: Nymphalidae). Aust. J. Entomol 42, 352–356 (2003).

    Article 

    Google Scholar 

  • 68.

    Lankinen, P. & Forsman, P. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. J. Biol. Rhythms 21, 3–12 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Kouloussis, N. A. et al. Seasonal trends in Ceratitis capitata reproductive potential derived from live-caught females in Greece. Entomol. Exp. Appl. 140, 181–188. https://doi.org/10.1111/j.1570-7458.2011.01154.x (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Kouloussis, N. A. et al. Life table assay of field-caught Mediterranean fruit flies, Ceratitis capitata, reveals age bias. Entomol. Exp. Appl. 132, 172–181. https://doi.org/10.1111/j.1570-7458.2009.00879.x (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Tasnin, M. S., Silva, R., Merkel, K. & Clarke, A. R. Response of male Queensland fruit fly (Diptera: Tephritidae) to host fruit odors. J. Econ. Entomol. 113, 1888–1893 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 72.

    Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).

    Article 

    Google Scholar 

  • 73.

    Chinajariyawong, A., Drew, R., Meats, A., Balagawi, S. & Vijaysegaran, S. Multiple mating by females of two Bactrocera species (Diptera: Tephritidae: Dacinae). Bull. entomol. research 100, 325 (2010).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Pike, N. & Meats, A. Potential for mating between Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (hardy) (Diptera: Tephritidae). Aust. J. Entomol. 41, 70–74 (2002).

    Article 

    Google Scholar 

  • 75.

    Tasnin, M. S., Merkel, K. & Clarke, A. R. Effects of advanced age on olfactory response of male and female Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). J. Insect Physiol. 122, 104024 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Perez-Staples, D., Prabhu, V. & Taylor, P. W. Post-teneral protein feeding enhances sexual performance of Queensland fruit flies. Physiol. Entomol. 32, 225–232 (2007).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The land use–food–coronavirus nexus

    A performance evaluation of despiking algorithms for eddy covariance data