Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Annu. Rev. Ecol. Syst. 17, 67–88 (1986).
Google Scholar
Kishimoto-Yamada, K. & Itioka, T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)?. Entomol. Sci. 18, 407–419. https://doi.org/10.1111/ens.12134 (2015).
Google Scholar
dos Santos, J. P. D., Iserhard, C. A., Carreira, J. Y. O. & Freitas, A. V. L. Monitoring fruit-feeding butterfly assemblages in two vertical strata in seasonal Atlantic Forest: Temporal species turnover is lower in the canopy. J. Trop. Ecol. 33, 345–355. https://doi.org/10.1017/s0266467417000323 (2017).
Google Scholar
Bonebrake, T. C., Ponisio, L. C., Boggs, C. L. & Ehrlich, P. R. More than just indicators: A review of tropical butterfly ecology and conservation. Biol. Conser. 143, 1831–1841 (2010).
Google Scholar
Molleman, F. Moving beyond phenology: New directions in the study of temporal dynamics of tropical insect communities. Curr. Sci. 114, 982 (2018).
Google Scholar
Frith, C. B. & Frith, D. W. Seasonality of insect abundance in an Australian upland tropical rainforest. Aust. J. Ecol. 10, 237–248 (1985).
Google Scholar
Braby, M. Seasonal-changes in relative abundance and spatial-distribution of Australian lowland tropical satyrine butterflies. Aust. J. Zool. 43, 209–229 (1995).
Google Scholar
Muniz, D. G., Freitas, A. V. & Oliveira, P. S. Phenological relationships of Eunica bechina (Lepidoptera: Nymphalidae) and its host plant, Caryocar brasiliense (Caryocaraceae), in a Neotropical savanna. Stud. Neotrop. Fauna Environ. 47, 111–118 (2012).
Google Scholar
Wolda, H. Insect seasonality: Why?. Annu. Rev. Ecol. Syst. 19, 1–18 (1988).
Google Scholar
Yonow, T. et al. Modelling the population dynamics of the Queensland fruit fly, Bactrocera (Dacus) tryoni: A cohort-based approach incorporating the effects of weather. Ecol. Model. 173, 9–30. https://doi.org/10.1016/s0304-3800(03)00306-5 (2004).
Google Scholar
Baker, R. et al. Bactrocera dorsalis pest report to support ranking of EU candidate priority pests. EFSA https://doi.org/10.5281/zenodo.2786921 (2019).
Valtonen, A. et al. Tropical phenology: Bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere https://doi.org/10.1890/es12-00338.1 (2013).
Google Scholar
Hernández, C. X. P. & Caballero, S. Z. Temporal variation in the diversity of Cantharidae (Coleoptera), in seven assemblages in tropical dry forest in Mexico. Trop. Conserv. Sci. 9, 439–464 (2016).
Google Scholar
Marchioro, C. A. & Foerster, L. A. Biotic factors are more important than abiotic factors in regulating the abundance of Plutella xylostella L., Southern Brazil. Rev. Bras. Entomol. 60, 328–333 (2016).
Google Scholar
Meats, A. The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, Australia. Proc. Ecol. Soc. Aust. 11, 1–61 (1981).
Sutherst, R. W. & Yonow, T. The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Aust. J. Agric. Res. 49, 935–954 (1998).
Google Scholar
Choudhary, J. S. et al. Potential changes in number of generations of oriental fruit fly, Bactrocera Dorsalis (Diptera: Tephritidae) on mango in India in response to climate change scenarios. J. Agrometeorol. 19, 200–206 (2017).
Clarke, A. R. Biology and Management of Bactrocera and Related Fruit Flies (CABI, 2019).
Google Scholar
Sakai, S. et al. Plant reproductive phenology over four years including an episode of general flowering in a lowland dipterocarp forest, Sarawak, Malaysia. Am. J. Bot. 86, 1414–1436 (1999).
Google Scholar
Land, K. C., Yang, Y. & Zeng, Y. Mathematical demography. Handbook of Population 659–717 (Springer, 2005).
Carey, J. R. & Roach, D. A. Biodemography: An Introduction to Concepts and Methods (Princeton University Press, 2020).
Google Scholar
Carey, J. R. Applied Demography for Biologists: With Special Emphasis on Insects (Oxford University Press, 1993).
Carey, J. R. Insect biodemography. Annu. Rev. Entomol. 46, 79–110 (2001).
Google Scholar
Southwood, T. R. E. Ecological Methods: With Particular Reference to the Study of Insect Populations. xviii + 391 (Methuen, London, 1966).
Udevitz, M. S. & Ballachey, B. E. Estimating survival rates with age-structure data. J. Wildl. Manag. 62, 779–792 (1998).
Google Scholar
Müller, H. G. et al. Demographic window to aging in the wild: constructing life tables and estimating survival functions from marked individuals of unknown age. Aging Cell 3, 125–131 (2004).
Google Scholar
Zajitschek, F., Zajitschek, S. & Bonduriansky, R. Senescence in wild insects: Key questions and challenges. Funct. Ecol. 34, 26–37 (2020).
Google Scholar
Carey, J. R. et al. Age structure changes and extraordinary lifespan in wild medfly populations. Aging Cell 7, 426–437. https://doi.org/10.1111/j.1474-9726.2008.00390.x (2008).
Google Scholar
Rao, A. S. S. & Carey, J. R. Generalization of Carey’s equality and a theorem on stationary population. J. Math. Biol. 71, 583–594 (2015).
Google Scholar
Carey, J. R. Biodemography of the Mediterranean fruit fly: Aging, longevity and adaptation in the wild. Exp. Gerontol. 46, 404–411. https://doi.org/10.1016/j.exger.2010.09.009 (2011).
Google Scholar
Muller, H. G., Wang, J. L., Yu, W., Delaigle, A. & Carey, J. R. Survival and aging in the wild via residual demography. Theor. Popul. Biol. 72, 513–522. https://doi.org/10.1016/j.tpb.2007.07.003 (2007).
Google Scholar
Vaupel, J. Life lived and left: Carey’s equality. Demogr Res 20, 7–10. https://doi.org/10.4054/DemRes.2009.20.3 (2009).
Google Scholar
Carey, J. R., Papadopoulos, N. T., Papanastasiou, S., Diamantidis, A. & Nakas, C. T. Estimating changes in mean population age using the death distributions of live-captured medflies. Ecol. Entomol. 37, 359–369. https://doi.org/10.1111/j.1365-2311.2012.01372.x (2012).
Google Scholar
Papadopoulos, N. T. et al. Seasonality of post-capture longevity in a medically-important mosquito (Culex pipiens). Front. Ecol. Evol https://doi.org/10.3389/fevo.2016.00063 (2016).
Google Scholar
Behrman, E. L., Watson, S. S., O’Brien, K. R., Heschel, M. S. & Schmidt, P. S. Seasonal variation in life history traits in two Drosophila species. J Evol Biol 28, 1691–1704. https://doi.org/10.1111/jeb.12690 (2015).
Google Scholar
Drew, R. A. The tropical fruit flies (Diptera: Tephritidae: Dacinae) of the Australasian and Oceanian regions. Mem. Queensland Museum 26, 1 (1989).
Dominiak, B. C. Components of a systems approach for the management of Queensland fruit fly Bactrocera tryoni (Froggatt) in a post dimethoate fenthion era. Crop prot. 116, 56–67 (2019).
Google Scholar
Boulter, S. L., Kitching, R. L. & Howlett, B. G. Family, visitors and the weather: patterns of flowering in tropical rain forests of northern Australia. J. Ecol. 94, 369–382. https://doi.org/10.1111/j.1365-2745.2005.01084.x (2006).
Google Scholar
Dominiak, B. C. & Mapson, R. Revised distribution of Bactrocera tryoni in eastern Australia and effect on possible incursions of Mediterranean fruit fly: Development of Australia’s eastern trading block. J. Econ. Entomol. 110, 2459–2465 (2017).
Google Scholar
Bateman, M. Adaptations to temperature in geographic races of the Queensland fruit fly Dacus (Strumenta) tryoni. Aust. J. Zool. 15, 1141–1161 (1967).
Google Scholar
Bateman, M. Determinants of abundance in a population of the Queensland fruit fly. In: Southwood, T.R.E. (ed.) Insect abundance 119–131 (Blackwell Scientific Publications, London, 1968).
Drew, R., Zalucki, M. & Hooper, G. Ecological studies of eastern Australian fruit flies (Diptera: Tephritidae) in their endemic habitat. Oecologia 64, 267–272 (1984).
Google Scholar
Muthuthantri, S., Maelzer, D., Zalucki, M. P. & Clarke, A. R. The seasonal phenology of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) in Queensland. Aust. J. Entomol. 49, 221–233. https://doi.org/10.1111/j.1440-6055.2010.00759.x (2010).
Google Scholar
Lloyd, A. C. et al. Area-wide management of fruit flies (Diptera: Tephritidae) in the Central Burnett district of Queensland. Aust. J. Crop Prot. 29, 462–469. https://doi.org/10.1016/j.cropro.2009.11.003 (2010).
Google Scholar
Pritchard, G. The ecology of a natural population of Queensland fruit fly, Dacus tryoni III. The maturation of female flies in relation to temperature. Aust. J. Zool. 18, 77–89 (1970).
Google Scholar
Clarke, A. R., Merkel, K., Hulthen, A. D. & Schwarzmueller, F. Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) overwintering: an overview. Aust. Entomol. 58, 3–8. https://doi.org/10.1111/aen.12369 (2019).
Google Scholar
Merkel, K. et al. Temperature effects on “overwintering” phenology of a polyphagous, tropical fruit fly (Tephritidae) at the subtropical/temperate interface. J. Appl. Entomol. 143, 754–765 (2019).
Google Scholar
Raghu, S., Clarke, A. R., Drew, R. A. & Hulsman, K. Impact of habitat modification on the distribution and abundance of fruit flies (Diptera: Tephritidae) in Southeast Queensland. Popul. Ecol. 42, 153–160 (2000).
Google Scholar
Novotny, V., Clarke, A. R., Drew, R. A., Balagawi, S. & Clifford, B. Host specialization and species richness of fruit flies (Diptera: Tephritidae) in a New Guinea rain forest. J. Trop. Ecol. 21, 67–77 (2005).
Google Scholar
Fletcher, B. Temperature-regulated changes in the ovaries of overwintering females of the Queensland Fruit Fly, Dacus tryoni. Aust. J. Zool. 23, 91–102 (1975).
Google Scholar
Meats, A. & Fay, H. The effect of acclimation on mating frequency and mating competitiveness in the Queensland fruit fly, Dacus tryoni, in optimal and cool mating regimes. Physiol. Entomol. 1, 207–212 (1976).
Google Scholar
Balagawi, S. Comparative ecology of Bactrocera Cucumis (French) and Bactrocera Tryoni (Froggatt) (Diptera: Tephritidae)—Understanding the life history consequences of host selection and oviposition behavior. Unpublished Thesis, Griffith University (2006).
Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. 105, 2498–2503 (2008).
Google Scholar
Carey, J. R., Liedo, P., Müller, H.-G., Wang, J.-L. & Vaupel, J. W. Dual modes of aging in Mediterranean fruit fly females. Science 281, 996–998 (1998).
Google Scholar
Fanson, B. G. & Taylor, P. W. Protein: carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast: Sugar ratios. Age 34, 1361–1368 (2012).
Google Scholar
McElderry, R. M. Seasonal life history trade-offs in two leafwing butterflies: Delaying reproductive development increases life expectancy. J. Insect Physiol. 87, 30–34 (2016).
Google Scholar
Werfel, J., Ingber, D. E. & Bar-Yam, Y. Theory and associated phenomenology for intrinsic mortality arising from natural selection. PLoS ONE 12, e0173677 (2017).
Google Scholar
Kozeretska, I. A., Serga, S. V., Koliada, A. K. & Vaiserman, A. M. Epigenetic regulation of longevity in insects. Adv. Insect Physiol. 53, 87–114 (2017).
Google Scholar
Meats, A. Critical periods for developmental acclimation to cold in the Queensland fruit fly. Dacus tryoni. J. Insect Physiol. 29, 943–946 (1983).
Google Scholar
Kumaran, N. et al. Plant-mediated female transcriptomic changes post-mating in a tephritid fruit fly, Bactrocera tryoni. Genome Biol. Evol. 10, 94–107 (2018).
Google Scholar
Dominiak, B. C., Sundaralingam, S., Jiang, L., Jessup, A. & Barchia, I. Production levels and life history traits of mass reared Queensland fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) during 1999/2002 in Australia. Plant Prot. Q. 23, 131–135 (2008).
Fanson, B., Sundaralingam, S., Jiang, L., Dominiak, B. & D’arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159 (2014).
Google Scholar
Papadopoulos, N., Katsoyannos, B., Carey, J. & Kouloussis, N. Seasonal and annual occurrence of the Mediterranean fruit fly (Diptera: Tephritidae) in northern Greece. Ann. Entomol. Soc. Am. 94, 41–50 (2001).
Google Scholar
Brakefield, P. M. & Reitsma, N. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Entomol. 16, 291–303 (1991).
Google Scholar
Molleman, F., Zwaan, B., Brakefield, P. & Carey, J. Extraordinary long life spans in fruit-feeding butterflies can provide window on evolution of life span and aging. Exp. Gerontol. 42, 472–482 (2007).
Google Scholar
Denlinger, D. L. Dormancy in tropical insects. Ann. Rev. Entomol 31, 239–264 (1986).
Google Scholar
Canzano, A. A., Jones, R. E. & Seymour, J. E. Diapause termination in two species of tropical butterfly, Euploea core (Cramer) and Euploea sylvester (Fabricius) (Lepidoptera: Nymphalidae). Aust. J. Entomol 42, 352–356 (2003).
Google Scholar
Lankinen, P. & Forsman, P. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. J. Biol. Rhythms 21, 3–12 (2006).
Google Scholar
Kouloussis, N. A. et al. Seasonal trends in Ceratitis capitata reproductive potential derived from live-caught females in Greece. Entomol. Exp. Appl. 140, 181–188. https://doi.org/10.1111/j.1570-7458.2011.01154.x (2011).
Google Scholar
Kouloussis, N. A. et al. Life table assay of field-caught Mediterranean fruit flies, Ceratitis capitata, reveals age bias. Entomol. Exp. Appl. 132, 172–181. https://doi.org/10.1111/j.1570-7458.2009.00879.x (2009).
Google Scholar
Tasnin, M. S., Silva, R., Merkel, K. & Clarke, A. R. Response of male Queensland fruit fly (Diptera: Tephritidae) to host fruit odors. J. Econ. Entomol. 113, 1888–1893 (2020).
Google Scholar
Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).
Google Scholar
Chinajariyawong, A., Drew, R., Meats, A., Balagawi, S. & Vijaysegaran, S. Multiple mating by females of two Bactrocera species (Diptera: Tephritidae: Dacinae). Bull. entomol. research 100, 325 (2010).
Google Scholar
Pike, N. & Meats, A. Potential for mating between Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (hardy) (Diptera: Tephritidae). Aust. J. Entomol. 41, 70–74 (2002).
Google Scholar
Tasnin, M. S., Merkel, K. & Clarke, A. R. Effects of advanced age on olfactory response of male and female Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). J. Insect Physiol. 122, 104024 (2020).
Google Scholar
Perez-Staples, D., Prabhu, V. & Taylor, P. W. Post-teneral protein feeding enhances sexual performance of Queensland fruit flies. Physiol. Entomol. 32, 225–232 (2007).
Google Scholar
Source: Ecology - nature.com