in

A prevalent and culturable microbiota links ecological balance to clinical stability of the human lung after transplantation

Combined culture-dependent and culture-independent approach identifies the prevalent and viable bacterial community members of the human lung post-transplant

To characterize the bacterial community composition of the lung microbiota post-transplant, we performed 16S rRNA gene amplicon sequencing of 234 longitudinal BALF samples from 64 lung transplant recipients collected over a 49-month period (Fig. 1a, Supplementary Table 1). A total of 7164 operational taxonomic units (OTUs) were identified, excluding OTUs contributing to reads in 11 negative control samples32 (see “Methods”, Supplementary Fig. 1a, Supplementary Data 1 and 2). In accordance with previous studies on BALF samples from healthy non-transplant individuals4,5,6,26, we found that Bacteroidetes and Firmicutes followed by Proteobacteria and Actinobacteria are the most abundant phyla in the post-transplant lung (Fig. 1b). Prevalence analysis across all BALF samples showed that the community composition is highly variable with only 22 OTUs shared by ≥50% of the samples (Supplementary Fig. 1b, Supplementary Data 3). However, these 22 OTUs constituted 42% of the total number of rarefied reads, indicating that they are predominant members of the post-transplant lung microbiota (Fig. 1c, Supplementary Fig. 1c, Supplementary Table 2, Supplementary Data 3). They belonged to the genera Prevotella 7, Streptococcus, Veillonella, Neisseria, Alloprevotella, Pseudomonas, Gemella, Granulicatella, Campylobacter, Porphyromonas and Rothia, the majority of which are also prevailing community members in the healthy human lung3,5,7,26, suggesting a considerable overlap in the overall composition of the lung microbiota between the healthy and the transplanted lung.

Fig. 1: Combining BALF amplicon sequencing and bacterial culturing to deduce the microbial ecology of deep lung microbiota.

a Schematic of the sampling of Bronchoalveolar lavage fluid (BALF) from lung transplant recipients over time (months post-transplant). b Relative abundances (%) of most abundant phyla across BALF samples. Box plots show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). c Prevalence (% samples) vs contribution to total reads across samples for most abundant phyla. Dot color shows different genera and size show total rarefied reads. Gray dashed horizontal line shows prevalence ≥50%. d Scatter plot shows correlation between number of observed OTUs and bacterial counts per BALF sample obtained by quantifying 16S rRNA gene copies with qPCR. Linear regression is shown by the blue line with gray shaded area showing 95% confidence interval (n = 234, two-sided, F(1, 232) = 91.04, P = 2.2 × 10−16), Coefficient of correlation; R2 = 0.28. e Bar chart shows lung taxa (genera; OTU IDs) that contributed ≥75% of total bacterial biomass across samples (n = 234). Venn diagram inset shows overlap (yellow) between the most prevalent (≥50% incidence, light blue) and the most abundant (≥75% total count, red) taxa in the transplanted lung. Bar colors also show the same.

Full size image

Differences in bacterial loads between samples can skew community analyses when based on relative abundance profiling alone. Therefore, we used qPCR to determine the total copies of the 16S rRNA gene as an estimate for bacterial counts, and normalized the abundances of each OTU across the 234 samples (absolute abundance). We found that the bacterial counts vastly differed between samples, ranging between 101 and 106 gene copies per ml of BALF (Supplementary Fig. 1d). The number of observed OTUs increased with decreasing counts (Fig. 1d) suggesting that a large fraction of the OTUs were detected in samples of low bacterial biomass and hence represent either transient or extremely low-abundant community members, or sequencing artefacts and contaminations. In turn, 19 of the 7164 OTUs constituted >75% of the total bacterial biomass detected across the 234 BALF samples (Fig. 1e). This included 11 of the 22 most prevalent OTUs (see above) plus eight OTUs that were detected in only a few samples but at very high abundance (Staphylococcus; OTU_2, Corynebacterium 1; OTU_16 and OTU_24, Anaerococcus; OTU_49 and OTU_234, Haemophilus; OTU_78, Streptococcus; OTU_6768, Peptoniphilus; OTU_63, Supplementary Table 2). It is important to differentiate these opportunistic colonizers from other community members with low incidence, as they reached very high bacterial counts in some samples with potential implications for lung health.

To demonstrate the viability of prevalent lung microbiota members and to establish a reference catalogue of bacterial isolates from the human lung for experimental studies, we complemented the amplicon sequencing with a bacterial culturing approach (Supplementary Fig. 2). We cultivated 21 random BALF samples from 18 individuals, on 15 different semi-solid media (both general and selective) in combination with 3 oxygen concentrations; aerobic, 5% CO2, and anaerobic (See “Methods” and Supplementary Table 3), representing 26 different conditions. We cultured fresh BALF immediately upon extraction (within 2 h), as we observed loss in bacterial diversity upon cultivating frozen samples. This resulted in a total of 300 bacterial isolates, representing 5 phyla, 7 classes, 13 orders, and 17 families from which we built an open-access biobank called the Lung Microbiota culture Collection (LuMiCol, Supplementary Data 4, https://github.com/sudu87/Microbial-ecology-of-the-transplanted-human-lung).

To examine the extent of overlap between bacteria in LuMiCol and the diversity obtained by amplicon sequencing, we included 16S rRNA gene sequences from 215 isolates that passed our quality filter into the community analysis, which allowed for the retrieval of OTU-isolate matching pairs32 (Methods). We found that 213 isolates matched to 47 OTUs (Fig. 2a, c, Supplementary Data 5), including 17 of the most prevalent and abundant bacteria (Fig. 1e, Supplementary Table 2). As expected, bacteria with high abundance in the amplicon sequencing-based community analysis were isolated more frequently, with Firmicutes revealing the highest isolate diversity (Fig. 2a–c, Supplementary Data 4, 5) and being recovered under the most diverse culturing conditions.

Fig. 2: A lung microbiota culture collection (LuMiCol) reveals extended diversity and phenotypic characteristics of the lower airway bacterial community.

a Phylogenetic tree of the 47 OTU-isolate matching pairs inferred with FastTree. Branch bootstrap support values (size of dark gray circles) ≥80% are displayed. b Growth characteristics of each OTU-isolate matching pair in three different oxygen conditions (Anaerobic – light brown, 5% CO2-yellow, aerobic-light blue, n = 3). Column with pie charts shows growth on semi-solid agar. Heatmap shows median change in Optical Density (OD) at 600 nm growth in three different liquid media (THY, RPMI, RPMI without glucose) over 3 days. c Cumulative counts of each OTU-isolate matching pair across all BALF samples (gray). d Number of isolates in Lumicol (black) per OTU-isolate matching pair. Taxa are labeled as genus; OTU ID, with an indication of whether they are prevalent (gray rectangle) or opportunistic (magenta rectangle) in the lower airway community. The names of the closest hit in databases: eHOMD and SILVA are used as species descriptor.

Full size image

In summary, our results from the combined culture-dependent and culture-independent approach show that the lung microbiota post-transplant is highly variable in terms of both bacterial load and community composition with many transient and low-abundant bacterial taxa. However, a few community members display relatively high prevalence and/or abundance suggesting that they represent important colonizers of the human lung.

LuMiCol informs on the diversity and metabolic preferences of culturable human lung bacteria

We characterized the culturable community members of the lower respiratory tract contained in LuMiCol by testing a wide range of growth conditions and phenotypic properties (see “Methods”). The majority of the cultured isolates could taxonomically be assigned at the species level based on genotyping of the 16S rRNA gene V1-V5 region. However, the limited taxonomic resolution offered by this method does not allow to discriminate between closely related strains, which can include both pathogenic and non-pathogenic bacteria. Hence for Streptococcus, we additionally tested for type of hemolysis (alpha, beta, or gamma) and resistance to optochin, which differentiates the pathogenic pneumococcus and the non-pathogenic viridans groups (Fig. 2a, Supplementary Fig. 2b, c). This demonstrated that the 16 Streptococcus OTU-isolate pairs belong to the viridans group of streptococci (VS)33. Interestingly, these isolates exhibited the highest genotypic and phenotypic diversity throughout our collection and belonged to five OTUs among the 22 most prevalent community members, with Streptococcus mitis (OTU_11) present in 93.6% of all samples.

BALF from healthy individuals contains amino acids, citrate, urate, fatty acids, and antioxidants such as glutathione but no detectable glucose34, which is associated with increased bacterial load and infection35,36,37. To get insights into basic bacterial metabolism, we assessed the growth of all 47 isolates matching an OTU under different oxygen concentrations. We used undefined rich media (Todd-Hewitt Yeast extract) and defined low-complexity liquid media (RPMI 1640), including a glucose-free version to mimic the deep lung environment (see “Methods”). Despite the presence of oxygen in the human lung, the majority of the isolates were either obligate or facultative anaerobes (Fig. 2a), including some of the most prevalent members (Prevotella melaninogenica (OTU_3), Streptococcus mitis (OTU_11), Veillonella atypica (OTU_6) and Granulicatella adiacens (OTU_17). A similar trend was also observed in liquid media under anaerobic conditions, with the exception of the genera Prevotella, Veillonella and Granulicatella. Most streptococci from the human lung grew best in complex liquid media containing glucose under anaerobic conditions, including the most prevalent species in our cohort, S. mitis (OTU_11) (Fig. 2b). However, noticeable exceptions were S. vestibularis (OTU_34), S. oralis (OTU_3427 and OTU_1567), and S. gordonii (OTU_10031), which grew equally well in the presence of oxygen and in low-complexity liquid medium (Fig. 2b). Most Actinobacteria grew best on rich medium in the presence of 5% CO2, with an exception of Actinomyces odontolyticus (OTU_39), which required anaerobic conditions. Some Actinobacteria grew equally well in anaerobic conditions as in the presence of 5% CO2, i.e., Corynebacterium durum (OTU_501), Actinobacteria sp. oral taxon (OTU_328 and OTU_228).

The two most predominant opportunistic pathogens in our lung cohort, P. aeruginosa (OTU_1) and S. aureus (OTU_2), grew best in rich liquid medium in the presence of oxygen (Fig. 2c), although these also grew to lower degree under anaerobic conditions. These results indicate that changes in the physicochemical conditions in the lung may favor the growth of these two opportunistic pathogens. In summary, our observations from the bacterial culture collection provide first insights into the phenotypic properties of human lung bacteria and will serve as a basis for future experimental work.

Identification of four compositionally distinct pneumotypes post-transplant using machine learning based on ecological metrics

To detect and characterize differences in bacterial community composition between BALF samples from transplant patients, we clustered the samples using an unsupervised machine learning algorithm based on pairwise Bray–Curtis dissimilarity32 (beta diversity, See “Methods”, Supplementary Data 6). This segregated the samples into four partitions around medoids (PAMs) at both phylum and OTU level (Fig. 3a, b, Supplementary Fig. 3a, b). We refer to these clusters as “pneumotypes” PAM1, PAM2, PAM3, and PAM4 (Supplementary Table 4). PAM1 formed the largest cluster consisting of the majority of samples (n = 115) followed by PAM3 (n = 76), PAM2 (n = 19), and PAM4 (n = 24) (Supplementary Data 7). Examination of various diversity measures (Species occurrence, OTU diversity, OTU richness, Fig. 3c–e), distribution of the dominant community members (Fig. 3f), and bacterial counts (16S rRNA gene copies, Fig. 3g) revealed distinctive characteristics between the four pneumotypes.

Fig. 3: Bacterial communities of the lung post-transplant fall into four ‘pneumotypes’ with distinct community characteristics.

a, b Principal component analysis shows Partition around medoids (PAMs) at phylum and OTU level respectively generated by k-medoid-based unsupervised machine learning using Bray–Curtis dissimilarity (occurrence and abundance). Pneumotypes are color coded: Balanced (red, n = 115), Staphylococcus (green, n = 19), Microbiota-depleted (MD, blue, n = 76), and Pseudomonas (orange, n = 24). cg Violin plots show distributions of pairwise species occurrence (Sorenson’s index, PERMANOVA, two-sided, F(3, 229) = 8.49, P = 9.9 × 10−5), OTU diversity (Kruskal–Wallis test, χ2 = 89.2, df = 3, two-sided, P = 2.2 × 10−16), OTU richness (ANOVA, F(3, 229) = 43.9, two-sided, P = 2.2 × 10−16), proportion of most dominant OTUs (Kruskal–Wallis test, χ2 = 94.45, df = 3, two-sided, P = 2.2 × 10−16), and total bacterial counts (ANOVA, F(3, 229) = 43.9, two-sided, P = 2.2 × 10−16), respectively, across the four pneumotypes. h, i Enrichment analysis of prevalence (green dotted line ≥50%) and absolute abundance across all samples of the 30 most dominant taxa (i.e., OTUs) in PneumotypeBalanced and PneumotypeMD respectively, when each was compared to the other three combined pneumotypes (gray boxes). Differential abundances after enrichment analysis was calculated between each PAM and the other three PAMs combined, using ART-ANOVA. j Heatmap shows relative percentage of taxa (right colored panel) cultured from paired samples of Bronchial aspiration (BA) and Bronchoalveolar lavage fluid (BALF) from each pneumotype (left colored panel). Oropharyngeal flora mainly corresponds to PneumotypeBalanced (i.e., Streptococcus, Prevotella, Veillonella). All box plots including insets show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). Multiple comparison of beta diversity indices was done by pairwise PERMANOVA (adonis) with False Discovery rate (FDR). Post hoc analyses (95% Confidence Interval) were done by using Tukey’s test (ANOVA) or Dunn’s test (Kruskal test) with False Discovery Rate (FDR) or least-squares means (ART-ANOVA) with False Discovery Rate (FDR). * P < 0.05, ** P < 0.01, *** P < 0.001, NS = not significant.

Full size image

PAM1 showed the highest similarity in community composition between samples (Species occurrence/Sorenson’s Index, Fig. 3c), and had intermediate levels of diversity and bacterial load (Fig. 3d, e and g, Supplementary Fig. 3c). Twenty of the 22 most prevalent community members were enriched in incidence and abundance in PAM1 when compared to the other PAMs (ART-ANOVA, FDR, abundance P < 0.01, Fig. 3h, Supplementary Table 5) with five OTUs occurring in >90% of the samples (incidence); P. melaninogenica (OTU_3, 97.4%), S. mitis (OTU 11, 99.1%), V. atypica (OTU_6, 93.9%), V. dispar (OTU_30, 93%) and G. adiacens (OTU_17, 93%). Contrastingly, two OTUs (P. aeruginosa; OTU_1 and P. fluorescens; OTU_15) had neither a higher incidence nor a higher abundance in PAM1 (Fig. 3h, Supplementary Table 5). Thus, PAM1 samples harbor balanced bacterial communities of relatively high similarity composed of the most prevalent bacteria across our data set. Henceforth, we refer to this PAM as the ‘balanced pneumotype’ (PneumotypeBalanced).

In contrast to PneumotypeBalanced, PAM2 and PAM4 harbored lower bacterial diversity (Fig. 3d) and OTU richness (Fig. 3e), were dominated by a single community member (Fig. 3f), and had higher bacterial loads (Fig. 3g). In these two PAMs, the taxa associated with PneumotypeBalanced had a low sample incidence and absolute abundance compared to the other PAMs (Supplementary Fig. 4a, b). S. aureus (OTU_2), Corynebacterium (OTU_24) and Anaerococcus (OTU_49) were enriched in PAM2 (ART-ANOVA, FDR, P < 0.001, Supplementary Fig. 4a), while Haemophilus (OTU_78) and P. aeruginosa (OTU_1 & OTU_15) dominated PAM4 (ART-ANOVA, FDR, P < 0.001, Supplementary Fig. 4b). We refer to these as ‘PneumotypeStaphylococcus’ (PAM2) and ‘PneumotypePseudomonas’ (PAM4), with the major species known to be potential pathogens that proliferate rapidly in lung, under a variety of pathological respiratory conditions38,39, in line with the high loads observed in our setting (Fig. 3g).

The fourth cluster identified, PAM3, exhibited the lowest between-sample similarity in species composition (Fig. 3c), the highest OTU diversity and richness (Fig. 3d, e), and lowest dominance (Fig. 3f). The samples in this PAM were characterized by remarkably low bacterial loads, up to two orders of magnitude below samples in other PAMs (Fig. 3g, Supplementary Fig. 3c), suggesting a depauperated microbiota that has been associated with dysbiotic physiological states of the gut microbiota40. Consequently, the high OTU richness detected in PAM3 samples is likely due to over-sequencing of rare or transient species, or sequencing artefacts. This is also supported by the fact that the 30 predominant microbiota members in PAM3 were significantly reduced in their incidence and abundance compared to the other PAMs (ART-ANOVA, FDR, P < 0.001, Fig. 3i). We refer to this PAM as the ‘microbiota-depleted’ pneumotype (PneumotypeMD).

Qualitative culture results obtained from matched BALF and bronchial aspirate (BA) on selective media further reinforced the genuine existence of the four pneumotypes (Fig. 3j, Supplementary Fig. 5). BALF samples from PneumotypeBalanced had the highest percentage of matches to the oropharyngeal microbiota, which consists of many of the bacteria predominant in this pneumotype (e.g., Streptococcus or Veillonella). Similarly, culture results of BALF samples with PneumotypeStaphylococcus and PneumotypePseudomonas were most frequently positive for S. aureus/Corynebacterium spp. and P. aeruginosa, respectively, while those obtained for BALF samples with PneumotypeMD were often culture negative (Fig. 3j, Supplementary Fig. 5a). A similar picture was observed for BA (Fig. 3j, Supplementary Fig. 5b), where however a higher percentage of positive cultures for oropharyngeal flora was observed compared to BALF, especially for PneumotypeMD. This suggests differences in the microbiota between the two sample types, despite the known topographic continuity of microbial communities in the airways1,3,7. This is supported by the fact that for PneumotypeStaphylococcus and PneumotypePseudomonas, there was no association between pre- and post-transplant colonization by S. aureus (χ2 = 0.047, P = 0.82) and P. aeruginosa (χ2 = 0.2, p = 0.65) (Supplementary Fig 5c, d), respectively, in the upper respiratory tract.

Many of the OTUs of PneumotypeMD could not be cultured in our bacterial culturing approach (Supplementary Table 3, 5, Supplementary Fig. 5), which together with the low bacterial abundance in corresponding samples, questions their relevance/existence as lung microbiota members. In contrast, most of the major community members characteristic of the other three pneumotypes were represented by isolates in LuMiCol, including the two opportunistic pathogens, P. aeruginosa (OTU_1) and S. aureus (OTU_2), providing the basis for future experimental work on the predominant species of these pneumotypes. Taken together, we identified four distinct bacterial communities in transplanted lung, which we refer to as pneumotypes, and validated them by culturing of BALF samples.

Bacterial pneumotypes are linked to distinct host gene expression patterns

The existence of bacterial pneumotypes with distinctive community composition suggests differences in the microenvironmental conditions of the human lung post-transplant, which could be echoed in other constituents of the lung ecosystem. We compared the median expression levels of 31 host genes belonging to seven functional categories across the four pneumotypes. These genes are involved in inflammation, immunoregulation, tissue remodeling and detection of bacteria and viruses (See “Methods”, Fig. 4a), and their expression patterns differed across the four pneumotypes, with particularly high transcriptional activity in PneumotypeStaphylococcus (Fig. 4a). To identify the genes with the greatest power to discriminate between the four pneumotypes and between samples differing by bacterial counts, we applied a machine learning approach (Random Forest, See “Methods”) based on the host gene expression in 234 BALF samples. The PneumotypeBalanced was predicted with highest accuracy (92%), followed by PneumotypePseudomonas (83.4%) and PneumotypeMD (81.4 %), while no accuracy was achieved for PneumotypeStaphylococcus (Supplementary Table 5). We identified 6 of the 31 genes to have a particularly high predictive power IFNLR1, MRC1, IL10, IL1RN, LY96, IDO (Importance score >10; 99% Confidence Interval, Fig. 4b). IFNLR1 encodes interferon lambda receptor 1, which is involved in antiviral defence and epithelial barrier integrity41. This gene was up-regulated in samples with PneumotypeBalanced compared to the other three pneumotypes (Fig. 4c). MRC1 (Mannose Receptor C-Type 1)42 and LY96 (Lymphocyte Antigen 96)43 encode microbial polysaccharide and lipopolysaccharide recognition proteins43, respectively. Compared to samples with PneumotypeBalanced, these two genes were up-regulated in PneumotypeStaphylococcus and PneumotypeMD, and down-regulated in samples with PneumotypePseudomonas (Fig. 4d, e). Samples with PneumotypeBalanced further differed from those linked to the other three pneumotypes by higher expression of genes involved in immune modulation and peripheral immune tolerance (IL-10/Interleukin 10 and IDO1/Indoleamine 2,3-Dioxygenase 1, Fig. 4f, Supplementary Fig. 6), and a lower expression of IL1RN (Interleukin 1 Receptor Antagonist, Fig. 4g), produced as part of the inflammatory response to control the potentially deleterious effects of Interleukin-1 beta (IL-1β)44.

Fig. 4: Host gene expression in the lung differs according to pneumotype and bacterial load.

a Radar plots show median-normalized expression of 31 host genes (radial axes) in the cell fraction of all BALF samples split by four pneumotypes. Circular distribution of genes is color-coded by seven functional categories and ticks (gray shading) show increase in expression from the inside to outside of the circle. b Importance scores (99% Confidence Interval) of host genes predictors of pneumotypes analyzed by Random Forest classification model and Boruta feature selection. Predictor genes are categorized into Confirmed (Green), Tentative (Yellow) and Rejected (Orange), ntrees = number of decision trees, splits per try = number of random predictors sub-sampled. ch Violin plots showing distribution of expression (log2 fold) of host genes with Importance scores >10 for pneumotype prediction (n = 229): IFNLR1 (Kruskal test, χ2 = 59.18, df = 3, two-sided, P = 8.8 × 10−13), MRC1 (ANOVA, F(3, 225) = 17.93, two-sided, P = 1.8 × 10−10), LY96 (Kruskal test, χ2 = 33.87, df = 3, two-sided, P = 2.1 × 10−7), IL10 (Kruskal test, χ2 = 58.82, df = 3, two-sided, P = 1.0 × 10−12), IL1RN (Kruskal test, χ2 = 58.02, df = 3, two-sided, P = 1.5 × 10−12) and PDGFD (Kruskal test, χ2 = 58.02, df = 3, two-sided, P = 8.7 × 10−10) across the pneumotypes. i Importance scores (99% Confidence Interval) of host genes in predicting bacterial counts analyzed by Random Forest regression model and Boruta feature selection. In addition to ntrees and splits per try = number of random predictors sub-sampled at each step and percent variance explained. j, k Scatter plots show correlation between expression(log2 fold) of PDGFD (stepwise regression AIC = 62.4, ANOVA, t = −5.9, P = 1.09 × 10−8) and IFNLR1 (stepwise regression AIC:35.7, ANOVA, t = 2.5, P = 1.15 × 10−2) and bacterial counts (log10 16 S rRNA copies) across samples (n = 234). Linear regression is shown by the blue line with gray shaded area showing 95% confidence interval. All box plots including insets show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single solid/hollow points). Post hoc analyses (95% Confidence Interval) were done by using Tukey’s test (ANOVA) or Dunn’s test (Kruskal test) with False Discovery Rate (FDR). * P < 0.05, ** P < 0.01, *** P < 0.001, NS = not significant.

Full size image

Similarly, we found five genes with high discriminating power (Fig. 4i, importance score >10) for bacterial counts, of which two were particularly good predictors: PDGFD and IFNLR1. PDGFD encodes the D isoform of platelet-derived growth factor, which promotes the proliferation of cells of mesenchymal origin such as fibroblasts45. Expression of this gene was negatively correlated (Fig. 4j, AIC 62.4, p < 0.001) with bacterial abundance. In contrast, IFNLR1 expression positively correlated with bacterial abundance (Fig. 4k, AIC 35.7, p < 0.05). Accordingly, PDGFD expression was higher while IFNLR1 expression was lower in PneumotypeMD (Fig. 4c, h) as compared to the other pneumotypes, suggesting a link between the normal presence of bacteria in the lower respiratory tract and homeostatic levels of tissue remodeling, epithelial barrier integrity and host response to viruses. In summary, these results show that host-specific gene expression markers align with distinct bacterial states, highlighting the existence of complex associations between different lung ecosystem characteristics.

Anellovirus dynamics is associated with bacterial community and host physiology in lung

The observed links between pneumotypes and antiviral defence prompted us to look into the tripartite interactions between lung bacteria, viruses, and host. To this end, we quantified the load of the three genera of anelloviruses identified in humans (Alphatorquevirus, Betatorquevirus, and Gammatorquevirus) across the 234 BALF samples. In accordance with a previous study46, we found that the transplanted lung contains high levels of anelloviruses, with Gammatorquevirus predominating. Viral loads of the three genera peaked between 1.5 and 6 months after transplantation and decreased at later time points (Fig. 5a). Anellovirus load varied substantially between pneumotypes (Fig. 5b–d). All three viral genera were lowest in samples with PneumotypeMD and Alphatorquevirus showed particularly high levels in samples with PneumotypePseudomonas (Fig. 5b). Intra-individual pairwise analysis revealed a particularly strong decrease in load for longitudinal transitions from PneumotypeBalanced to PneumotypeMD and a corresponding increase for the inverse (Fig. 5e, Supplementary Fig. 7). We further identified four human genes: TLR3, IGF1, RSAD2, IFITM2, as important predictors of anellovirus loads in BALF (Fig. 5f, See “Methods”). Of these, Toll-like Receptor 3 (TLR3) was positively correlated with total viral load (Fig. 5g, AIC 73.9, p < 0.001). This is consistent with the low viral load observed with PneumotypeMD, where TLR3 was down-regulated (Fig. 5h). These findings link changes in the lung microbiota composition to changes in viral loads and host gene expression indicating possible implications for allograft outcome.

Fig. 5: Anellovirus loads differ according to pneumotype and correlate with host physiology in the transplanted lung.

a Longitudinal progression of Anellovirus load (log10 pan-Anelloviridae genome copies, pink) and its three major genera: Alphatorquevirus (green), Betatorquevirus (turquoise) and Gammatorquevirus (violet) over five time windows after transplantation. Data presented here as mean viral load (points) with error bars showing ±SD. Statistical significance is shown for total Anellovirus loads against time windows (n = 225, ANOVA, F(5, 219) = 13.57, two-sided, P = 6.7 × 10−10). bd Violin plots show distribution of Alphatorquevirus (n = 217, Kruskal test, χ2 = 17.04, df = 3, two-sided, P = 6.9 × 10−4), Betatorquevirus (n = 215, ANOVA, F(3, 211) = 4.57, two-sided, P = 3.97 × 10−3) and Gammatorquevirus (n = 216, Kruskal test, χ2 = 8.94, df = 3, two-sided, P = 3.0 × 10−2) load across pneumotypes (plot colors). e Intra-individual analysis of Gammatorquevirus loads upon transition from PneumotypeBalanced (Red) to PneumotypeMD (Blue) (Wilcoxon test, two-sided, paired, P = 1.7 × 10−3) and vice-versa (Wilcoxon test, two-sided, paired, P = 1.72 × 10−2). Paired data (joined by black lines) presented here are viral genome copies (log10, points). f Importance scores (99% Confidence Interval) of host genes in predicting anellovirus load analyzed by Random Forest regression model and Boruta feature selection. Predictor genes are categorized into Confirmed (Green), Tentative (Yellow) and Rejected (Orange), ntrees = number of decision trees, splits per try = number of random predictors sub-sampled and percent variance explained. g Scatter plots show correlation between expression (log2 fold) of TLR3 (stepwise regression AIC:73.9, ANOVA, t = 3.56, P = 4.58 × 10−4) with total anellovirus load (log10 genome copies) across samples (n = 231). Linear regression is shown by the blue line with gray shaded area showing 95% confidence interval. h Violin plots show distribution of TLR3 expression (log2 fold) across the four pneumotypes (n = 231, Kruskal test, χ2 = 10.66, df = 3, two-sided, P = 1.3 × 10−2),. All box plots including insets show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). Post hoc analyses (95% Confidence Interval) were done by using Tukey’s test (ANOVA) or Dunn’s test (Kruskal test) with False Discovery Rate (FDR). * P < 0.05, ** P < 0.01, *** P < 0.001, NS = not significant.

Full size image

Pneumotypes are linked to differential risk of post-transplant clinical complication

A large set of clinical data (Supplementary Data 7) enabled us to associate differences in bacterial community composition, host gene expression, and anellovirus load to allograft and patient health status. Immunosuppression as well as prophylactic and therapeutic antibiotic usage were anticipated as major confounding factors. However, we found no association between the different pneumotypes and the main immunosuppressive drugs (ANOVA, prednisone; P = 7.68 × 10−1, tacrolimus; P = 9.1 × 10−1) used in our cohort, at the time of BALF sampling (Supplementary Fig. 8a, b). In contrast to what has been reported for blood plasma after transplantation47, we also did not observe a correlation between anellovirus load and immunosuppressive drug levels (Lm, prednisone; P = 8.0 × 10−1, tacrolimus; P = 9.1 × 10−1, Supplementary Fig. 8c, d, See “Methods”). However, we observed a negative relationship between the number of antibiotics administered at the time of BALF sampling and the fraction of samples in PneumotypeBalanced, and a positive relationship with the fraction of PneumotypeMD samples (Fisher’s test, P = 2.0 × 10−3, Fig. 6a). These observations thus suggest a link between intensive antibiotic use and a disturbance of the most balanced and compositionally stable lung microbiota profile.

Fig. 6: Association of post-transplant pneumotypes with pulmonary environment, local and peripheral host immunity and clinical status.

a Stacked bar plots showing proportion of samples associated (n = 223, Fisher’s test, P = 2.0 × 10−3) with the four pneumotypes relative to the number of antibiotics administered. b Bar plots show the proportion of infected samples across four pneumotypes. Presence of infection was categorized as yes/no and statistical analysis was done by a generalized linear model, family = binomial, n = 234, PneumotypeStaphylococcus; P < 0.001 and PneumotypePseudomonas P = 1.6 × 10−2, respectively; Fig. 6b) c, d Violin plots show distribution of Neutrophils (n = 213, ANOVA, F(3, 209) = 11.72, two-sided, P = 3.95 × 10−7) and Macrophages (n = 224, ANOVA, F(3, 211) = 2.35, two-sided, P = 7.57 × 10−2) counts (log10 cells per ml BALF) in lung linked to pneumotypes (plot colors). e Risk of rejection associated with each pneumotype (bar colors) was assessed by the cumulative percentages (%) of samples associated with each of the following conditions (See Methods): Chronic Lung Allograft Dysfunction (CLAD), presence of Donor-specific antibodies (DSA, Mean Fluorescence Intensity > 1000) or Acute cellular rejection (Biopsy score A2). f Violin plots show distribution of B-lymphocytes counts (n = 87, ANOVA, F(3, 83) = 3.84, two-sided, P = 1.26 × 10−2) in the blood associated with the four pneumotypes (plot colors). g Burden of three major anellovirus genera: Alphatorquevirus (Wilcoxon test, two-sided, P = 1.5 × 10−1), Betatorquevirus (Wilcoxon test, two-sided, unpaired, P = 9.0 × 10−2) and Gammatorquevirus (Wilcoxon test, two-sided, unpaired, P = 7.0 × 10−3) (log10 genome copies) in samples associated with CLAD (No or Yes, n = 29). h Violin plot showing distribution of lung function (% compared to baseline) measured by Forced Expiratory Volume in 1 s (FEV1, n = 206, Kruskal test, χ2 = 11.05, df = 3, two-sided, P = 1.1 × 10−2) across four pneumotypes (plot colors). All box plots including insets show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). Post hoc analyses (95% Confidence Interval) were done by using Tukey’s test (ANOVA) or Dunn’s test (Kruskal test) with False Discovery Rate (FDR). * P < 0.05, ** P < 0.01, *** P < 0.001, NS = not significant.

Full size image

We observed that a clinical diagnosis of infection was rare in the presence of PneumotypeBalanced and PneumotypeMD, compared to PneumotypeStaphylococcus and PneumotypePseudomonas (Binomial linear model, Yes or No, P < 0.001 and P = 0.016, respectively; Fig. 6b). This confirms the results of our 16S rRNA gene analysis, which showed that PneumotypeStaphylococcus and PneumotypePseudomonas are dominated by opportunistic pathogens, S. aureus and P. aeruginosa, respectively. It is also consistent with the finding of lower numbers of neutrophils (Fig. 6c), but not macrophages (Fig. 6d), in PneumotypeBalanced and PneumotypeMD as compared to PneumotypeStaphylococcus and, to a lesser extent, PneumotypePseudomonas, emphasizing that pneumotypes are associated with local conditions that differ in terms of recruitment of pro-inflammatory cells.

Lung transplant recipients face risks of allogeneic responses against the graft, notably promoted by clinical infection. Our study did not have the statistical power to dissect the links between pneumotypes and different types of rejection, limited by the number of samples per rejection category in our dataset. Therefore, we grouped 29 samples from 17 patients with either CLAD, acute cellular rejection grade ≥2, or the presence of donor-specific antibodies (mean fluorescence intensity >1000), as these all indicate a suboptimal control of host immune competence and thus an increased probability of allograft injury (Fig. 6e, See “Methods” for clinical definitions). The majority of these samples were associated with PneumotypeStaphylococcus (41.7%) and PneumotypeMD (26.2%), followed by PneumotypePseudomonas (15.4%) and PneumotypeBalanced (13.1%), suggesting that this latter microbiota profile is associated with a lower risk of clinical complications. This was further corroborated by the count of circulating B lymphocytes in peripheral blood, suggesting more active humoral immunity in the presence of PneumotypeStaphylococcus, PneumotypePseudomonas and PneumotypeMD, compared to PneumotypeBalanced (Tukeys test, P = 2.7 × 10−2, P = 2.6 × 10−1 and P = 1.2 × 10−1 respectively; Fig. 6f). In addition to bacterial composition, anelloviruses were also linked to CLAD through a lower load of Gammatorquevirus (Wilcoxon test, P = 7.0 × 10−3, Fig. 6g), while no significant association was observed with Alphatorquevirus or Betatorquevirus (Wilcoxon test, P = 1.5 × 10−1 and P = 9.0 × 10−2 respectively, Fig. 6g).

Finally, we used the measurement of ‘Forced Expiratory Volume in 1 s’ (FEV1) to search associations between lung ecology and pulmonary function testing. This assessment was made irrespective of the diagnosis of CLAD, which requires an irreversible drop in FEV1 below 80% of the baseline value, with prior exclusion of alternative confounding diagnosis (See “Methods”). PneumotypeStaphylococcus and PneumotypePseudomonas were associated with lower FEV1 values overall, with a frequent substantial decline below 80% predicted (Dunn’s test, P = 3.0 × 10−2, Fig. 6h), while PneumotypeBalanced, along with PneumotypeMD, was linked to preserved lung function.

PneumotypeBalanced shows the highest temporal stability and resilience in the transplanted lung

Taking advantage of the longitudinal sampling, we explored the dynamics of the pneumotypes after transplantation. We analyzed transitions between pneumotypes in up to eight BALF samples per transplant, collected within five consecutive time windows (Fig. 7a). There was no significant difference in the distribution of pneumotypes across the different time windows (χ2 test, P = 6.0 × 10−1). Although most BALF samples were associated with PneumotypeBalanced, transitions between two different microbiota pneumotypes occurred for about half of all consecutive sample pairs (Supplementary Fig. 9). The transition dynamics were explained by Markov chain properties, i.e., the pneumotype of a given sample only depends on the state of the previous sample in the chain (χ2 test, P = 3.3 × 10−1, Fig. 7b). The transitions were irreducible, aperiodic and recurrent, and none of the pneumotypes behaved as an absorbing state (See “Methods”). PneumotypeBalanced exhibited the greatest stability, with the highest probability of recurrence (63%), fitting the Markov probabilities, followed by PneumotypeMD (42%; Fig. 7b). In addition, the large fraction of transitions toward PneumotypeBalanced between the first four time windows indicated a substantial resilience capacity for this profile. Accordingly, the transitions between PneumotypeStaphylococcus, PneumotypePseudomonas and PneumotypeBalanced occurred mainly in the direction of this latter profile (Fig. 7b), while in contrast to model prediction, PneumotypeStaphylococcus and PneumotypePseudomonas appeared to be virtually disconnected.

Fig. 7: Longitudinal analysis of lung microbiota post-transplant and dynamics of pneumotype transitions.

a Sankey diagram showing transition of paired samples between pneumotypes (colors) across five time windows. b Markov chain model (See Methods) fitted to the observed pneumotype transitions (n = size of circle). Model was initiated with equal probabilities for each pneumotype (0.25, 100 bootstraps, left panel) and given transition matrix. Pneumotypes are represented by colored arrows/boxes, and the direction of a transition is indicated by a colored arrow of a thickness denoting the probability. c A patient case study showing transition of pneumotypes with clinical characteristics across two transplantation events. The heatmap shows host gene expression with functional categories (see also Fig. 4a, right vertical colored bars), neutrophil counts, bacterial and anellovirus loads in BALF across time and pneumotypes. Taxa obtained in routine clinical culture were abbreviated with letters. Samples positive for infection, ongoing antibiotic treatment or CLAD (black boxes) are presented above bar plots showing % lung function (see also Fig. 6g), across transplantation events and time post-transplantation (months) and pneumotypes (bar colour). d Scheme of bimodal disruption in lung ecosystem (colored arrows in a x–y plot) leading either to (i) a microbiota-depleted pneumotype with ambigous bacterial diversity (brown), low counts of bacteria (black) and viruses (gray), high lung cellular proliferation and chronic decline in lung function leading to rejection (purple), or (ii) pneumotypes dominated by opportunistic pathogens (Staphylococcus and Pseudomonas) with loss in bacterial diversity, high infection rate and inflammation (red), acute decline in lung function and rejection. Best-case scenario is defined by a middle ground with a balanced pneumotype consisting of the most prevalent bacteria in a homogenous composition with intermediate bacterial diversity, bacterial and viral abundance, high immune-modulatory activity and best preserved lung function. Original graphical art “Created using BioRender.com”.

Full size image

Finally, we illustrate the relationship between the temporal dynamics of pneumotypes and clinical outcomes using a case study (Fig. 7c). Patient 35 diagnosed with pulmonary fibrosis received two transplants, providing 12 serial samples and presenting each of the four pneumotypes (Fig. 7c). Disruption of the PneumotypeBalanced occurred from month 25, followed by transition to PneumotypeStaphylococcus at month 30. This was accompanied by a positive culture for Corynebacterium spp. in line with our enrichment analysis and clinical culture tests (Supplementary Fig. 4, Fig. 3j), increased BAL neutrophilia, and a concurrent increase in host immune gene expression (heatmap in Fig. 7c). Thereafter, the patient was repeatedly exposed to antibiotics, and respiratory function started declining irreversibly leading to the diagnosis of CLAD at month 49 with PneumotypeMD. Overall decrease in bacterial and anellovirus loads in the lung, suggested an increasing selection pressure on microbes most likely due to a combination of antibiotic treatment and poorly controlled host immune competence. The second transplant at month 50 was linked to a re-establishment of PneumotypeBalanced, which aligned with preserved lung function, intermediate loads of lung bacteria and anelloviruses, decrease in neutrophil counts and change in host immune gene expression. However, a transition to PneumotypePseudomonas was observed later until the end of sampling, with increased bacterial counts but no decrease in lung function (barplot in Fig. 7c). Taken together, these observations highlight the potential of integrating pneumotype with clinical and molecular data, with the primary goal of tracking disruption of PneumotypeBalanced beneficial to clinical stability.


Source: Ecology - nature.com

What manta rays remember: the best spots to get spruced up

Nitrogen isotope effects can be used to diagnose N transformations in wastewater anammox systems