East, E. M. The role of reproduction in evolution. Am. Nat. https://doi.org/10.1086/279670 (1918).
Google Scholar
Proctor, M., Yeo, P. F. & Lack, A. A Natural History of Pollination. (1996).
Spigler, R. B. & Ashman, T.-L. Gynodioecy to dioecy: are we there yet?. Ann. Bot. 109, 531–543. https://doi.org/10.1093/aob/mcr170%JAnnalsofBotany (2011).
Google Scholar
Barrett, S. Sexual interference of the floral kind. Heredity 88, 154–159 (2002).
Google Scholar
Li, Q.-J. et al. Flexible style that encourages outcrossing. Nature 410, 432–432. https://doi.org/10.1038/35068635 (2001).
Google Scholar
Sun, S., Gao, J. Y., Liao, W. J., Li, Q. J. & Zhang, D. Y. Adaptive significance of flexistyly in Alpinia blepharocalyx (Zingiberaceae): a hand-pollination experiment. Ann. Bot. 99, 661–666 (2007).
Google Scholar
Kumar, B. D., Deepika, D. S. & Raju, A. S. Reproductive ecology of the semi-evergreen tree Vitex negundo (Lamiaceae). Phytol. Balcanica 23, 39–53 (2017).
Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology (Elsevier, Amsterdam, 2013).
Darwin, C. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom (D. Appleton, Boston, 1877).
Baker, H. G. in Cold Spring Harbor Symposia on Quantitative Biology. 177–191 (Cold Spring Harbor Laboratory Press).
Heithaus, E. R., Opler, P. A. & Baker, H. G. Bat activity and pollination of Bauhinia pauletia: plant-pollinator coevolution. Ecology 55, 412–419 (1974).
Google Scholar
Armbruster, W. S. Can indirect selection and genetic context contribute to trait diversification? A transition-probability study of blossom-colour evolution in two genera. J. Evolut. Biol. 15, 468–486 (2002).
Google Scholar
Bradshaw, H. Jr. & Schemske, D. W. J. N. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426, 176 (2003).
Google Scholar
Gómez, J. M. & Zamora, R. Ecological factors that promote the evolution of generalization in pollination systems, in Plant–pollinator interactions: from specialization to generalization. 145–166 (2006).
Barrett, S. C. & Harder, L. D. Ecology and evolution of plant mating. Trends Ecol. Evolut. 11, 73–79 (1996).
Google Scholar
Elzinga, J. A. et al. Time after time: flowering phenology and biotic interactions. Trends Ecol. Evol. 22, 432–439 (2007).
Google Scholar
Huang, S.-Q., Xiong, Y.-Z. & Barrett, S. C. H. Experimental evidence of insect pollination in Juncaceae, a primarily wind-pollinated family. Int. J. Plant Sci. 174, 1219–1228. https://doi.org/10.1086/673247 (2013).
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Google Scholar
Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10, 710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x (2007).
Google Scholar
Winfree, R., Griswold, T. & Kremen, C. Effect of human disturbance on bee communities in a forested ecosystem. Conserv. Biol. 21, 213–223. https://doi.org/10.1111/j.1523-1739.2006.00574.x (2007).
Google Scholar
Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
Google Scholar
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).
Google Scholar
Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014 (2009).
Google Scholar
Mayer, C. et al. Pollination ecology in the 21st century: key questions for future research. J. Pollinat. Ecol. 3, 8–23 (2011).
Google Scholar
Chavez, D. J. & Lyrene, P. M. Effects of self-pollination and cross-pollination of Vaccinium darrowii (Ericaceae) and other low-chill blueberries. Hortsci. Publ. Am. Soc. Hortic. Sci. 44, 1538–1541 (2009).
Negussie, A., Achten, W. M. J., Verboven, H. A. F., Hermy, M. & Muys, B. Floral display and effects of natural and artificial pollination on fruiting and seed yield of the tropical biofuel crop Jatropha curcas L. Global Change Biol. Bioenergy 6, 210–218 (2014).
Google Scholar
Okubo, S., Yamada, M., Yamaura, T. & Akita, T. Effects of the pistil size and self-incompatibility on fruit production in Curculigo latifolia (Liliaceae). J. Jpn. Soc. Hortic. Sci. 79, 354–359 (2010).
Google Scholar
Benjamin, F. E. & Winfree, R. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environ. Entomol. 43, 1574–1583 (2014).
Google Scholar
Bennett, J. et al. A review of European studies on pollination networks and pollen limitation, and a case study designed to fill in a gap. AoB PLANTS https://doi.org/10.1093/aobpla/ply068 (2018).
Google Scholar
Wang, H., Matsushita, M., Tomaru, N., Nakagawa, M. & Arroyo, J. Differences in female reproductive success between female and hermaphrodite individuals in the subdioecious shrub Eurya japonica (Theaceae). Plant Biol. 17, 194–200 (2015).
Google Scholar
Wang, H., Matsushita, M., Tomaru, N. & Nakagawa, M. High male fertility in males of a subdioecious shrub in hand-pollinated crosses. AoB PLANTS 8, plw067 (2016).
Google Scholar
Shou, C., Wang, J., Zheng, X. & Guo, D. Inhibitory effect of jujuboside A on penicillin sodium induced hyperactivity in rat hippocampal CA1 area in vitro. Acta Pharmacol. Sin. 22, 986–990 (2001).
Google Scholar
Zhang, M. et al. Inhibitory effect of jujuboside A on glutamate-mediated excitatory signal pathway in hippocampus. Planta Med. 69, 692–695 (2003).
Google Scholar
Yue, Y. et al. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function. Food Funct. 6, 2568–2577 (2015).
Google Scholar
Han, D. et al. Jujuboside A protects H9C2 cells from isoproterenol-induced injury via activating PI3K/Akt/mTOR signaling pathway. Evidence-Based Complementary Alternative Medicine 2016 (2016).
Lu, J., Liu, M., Mao, Y. & Shen, L. Effects of vesicular-arbuscular mycorrhizae on the drought resistance of wild jujube (Zizyphs spinosus Hu) seedlings. Front. Agric. China 1, 468–471 (2007).
Google Scholar
Zhang, S. et al. Threshold effects of photosynthetic efficiency parameters of wild jujube in response to soil moisture variation on shell beach ridges, Shandong, China. Plant Biosyst. 148, 140–149 (2014).
Google Scholar
Wang, Q. Y. The developments of embryo and endosperm of Zizyphus jujuba mill. J. Integr. Plant Biol. 25, 32–37 (1983).
Google Scholar
Cruden, R. W. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31, 32–46. https://doi.org/10.1111/j.1558-5646.1977.tb00979.x (1977).
Google Scholar
Dafni, A. Pollination ecology: A practical approach. (1992).
Barrett, S. C. H. The evolution of mating strategies in flowering plants. Trends Plant Sci. 3, 335–341. https://doi.org/10.1016/s1360-1385(98)01299-0 (1998).
Google Scholar
Carr, D. E. & Dudash, M. R. Recent approaches into the genetic basis of inbreeding depression in plants. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 358, 1071–1084 (2003).
Google Scholar
Lloyd, D. G. & Webb, C. The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. NZ J. Bot. 24, 135–162 (1986).
Google Scholar
Ren, M. Stamen movements in hermaphroditic flowers: diversity and adaptive significance. J. Plant Ecol. (Chin. Vers.) 34, 867–875 (2010).
Xiao, C.-L. et al. Sequential stamen maturation and movement in a protandrous herb: mechanisms increasing pollination efficiency and reducing sexual interference. AoB PLANTS 9, plx019. https://doi.org/10.1093/aobpla/plx019 (2017).
Google Scholar
Nagy, E. S., Strong, L. & Galloway, L. F. Contribution of delayed autonomous selfing to reproductive success in mountain laurel, Kalmia latifolia (Ericaceae). Am. Midl. Nat. 142, 39–47 (1999).
Google Scholar
Liu, K.-W. et al. Pollination: self-fertilization strategy in an orchid. Nature 441, 945 (2006).
Google Scholar
Ye, Z.-M., Jin, X.-F., Yang, J., Wang, Q.-F. & Yang, C.-F. Accurate position exchange of stamen and stigma by movement in opposite direction resolves the herkogamy dilemma in a protandrous plant, Ajuga decumbens (Labiatae). AoB PLANTS https://doi.org/10.1093/aobpla/plz052 (2019).
Google Scholar
Brantjes, N. & De Vos, O. The explosive release of pollen in flowers of Hyptis (Lamiaceae). New Phytol. 87, 425–430 (1981).
Google Scholar
Guerrina, M., Casazza, G., Conti, E., Macrì, C. & Minuto, L. Reproductive biology of an Alpic paleo-endemic in a changing climate. J. Plant. Res. 129, 477–485 (2016).
Google Scholar
Bawa, K. S. & Beach, J. H. Evolution of sexual systems in flowering plants. Ann. Mo. Bot. Garden 68, 254–274 (1981).
Google Scholar
Dietzsch, A. C., Stanley, D. A. & Stout, J. C. Relative abundance of an invasive alien plant affects native pollination processes. Oecologia 167, 469–479 (2011).
Google Scholar
Ollerton, J. The evolution of pollinator-plant relationships within the arthropods. Evolution and phylogeny of the arthropoda. Entomology Society of Aragon, Zaragoza, 741–758 (1999).
Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).
Google Scholar
Inouye, D. W., Larson, B. M., Ssymank, A. & Kevan, P. G. Flies and flowers III: ecology of foraging and pollination. J. Pollinat. Ecol. 16, 115–133 (2015).
Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P. D. & Woyciechowski, M. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. U.S.A. 113, 146–151 (2016).
Google Scholar
Corbet, S. A. Pollination and the weather. Isr. J. Plant Sci. 39, 13–30 (1990).
Tuell, J. K. & Isaacs, R. Weather during bloom affects pollination and yield of highbush blueberry. J. Econ. Entomol. 103, 557–562 (2010).
Google Scholar
Ellis, C. R., Feltham, H., Park, K., Hanley, N. & Goulson, D. Seasonal complementary in pollinators of soft-fruit crops. Basic Appl. Ecol. 19, 45–55 (2017).
Google Scholar
Wang, W., Liu, Y., Chen, F.-D. & Dai, H.-G. Behavior and activity rhythm of flower-visiting insects on Chrysanthemum morifolium in Nanjing suburb. Shengtaixue Zazhi 27, 1167–1172 (2008).
Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. & Ollerton, J. Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060 (1996).
Google Scholar
Navarro-Pérez, M., López, J., Rodríguez-Riaño, T. & Ortega-Olivencia, A. Reproductive system of two Mediterranean Scrophularia species with large, showy flowers. Bot. Lett. 166, 467–477 (2019).
Google Scholar
Elle, E. Floral adaptations and biotic and abiotic selection pressures. Plant adaptation: Molecular genetics and ecology. National Research Council of Canada, Ottawa, Ontario, 111–118 (2004).
Redmond, C. M. & Stout, J. C. Breeding system and pollination ecology of a potentially invasive alien Clematis vitalba L. Ireland. J. Plant Ecol. 11, 56–63. https://doi.org/10.1093/jpe/rtw137%JJournalofPlantEcology (2018).
Google Scholar
Byers, D. & Waller, D. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Ann. Rev. Ecol. Syst. 30, 479–513 (1999).
Google Scholar
Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding depression in plants I. Genetic models. Evolution 39, 24–40 (1985).
Google Scholar
Zhang, C. et al. The genetic basis of inbreeding depression in potato. Nat. Genet. 51, 374–378 (2019).
Google Scholar
Jones, C. E. & Little, R. J. Handbook of Experimental Pollination Biology (Scientific and Academic Editions, New York, 1983).
Liu, P. et al. Study on the biological basis of pollination in Chinese Jujube (Zizyphus jujuba) and Wild Jujube (Z. spinosa). Journal of Fruit Science 21(3), 224–228 (2004).
Sun, Y., Wu, C., Wang, D. & Wang, Z. Comparative Study on Floral Organ Structure, Pollen Morphology and Viability of Ziziphus acdiojujuba. Chin. Agric. Sci. Bull. 32(4), 87–91 (2016).
Source: Ecology - nature.com