in

A primary study of breeding system of Ziziphus jujuba var. spinosa

[adace-ad id="91168"]
  • 1.

    East, E. M. The role of reproduction in evolution. Am. Nat. https://doi.org/10.1086/279670 (1918).

    Article 

    Google Scholar 

  • 2.

    Proctor, M., Yeo, P. F. & Lack, A. A Natural History of Pollination. (1996).

  • 3.

    Spigler, R. B. & Ashman, T.-L. Gynodioecy to dioecy: are we there yet?. Ann. Bot. 109, 531–543. https://doi.org/10.1093/aob/mcr170%JAnnalsofBotany (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Barrett, S. Sexual interference of the floral kind. Heredity 88, 154–159 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Li, Q.-J. et al. Flexible style that encourages outcrossing. Nature 410, 432–432. https://doi.org/10.1038/35068635 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Sun, S., Gao, J. Y., Liao, W. J., Li, Q. J. & Zhang, D. Y. Adaptive significance of flexistyly in Alpinia blepharocalyx (Zingiberaceae): a hand-pollination experiment. Ann. Bot. 99, 661–666 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Kumar, B. D., Deepika, D. S. & Raju, A. S. Reproductive ecology of the semi-evergreen tree Vitex negundo (Lamiaceae). Phytol. Balcanica 23, 39–53 (2017).

    Google Scholar 

  • 8.

    Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology (Elsevier, Amsterdam, 2013).

    Google Scholar 

  • 9.

    Darwin, C. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom (D. Appleton, Boston, 1877).

    Google Scholar 

  • 10.

    Baker, H. G. in Cold Spring Harbor Symposia on Quantitative Biology. 177–191 (Cold Spring Harbor Laboratory Press).

  • 11.

    Heithaus, E. R., Opler, P. A. & Baker, H. G. Bat activity and pollination of Bauhinia pauletia: plant-pollinator coevolution. Ecology 55, 412–419 (1974).

    Article 

    Google Scholar 

  • 12.

    Armbruster, W. S. Can indirect selection and genetic context contribute to trait diversification? A transition-probability study of blossom-colour evolution in two genera. J. Evolut. Biol. 15, 468–486 (2002).

    Article 

    Google Scholar 

  • 13.

    Bradshaw, H. Jr. & Schemske, D. W. J. N. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426, 176 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Gómez, J. M. & Zamora, R. Ecological factors that promote the evolution of generalization in pollination systems, in Plant–pollinator interactions: from specialization to generalization. 145–166 (2006).

  • 15.

    Barrett, S. C. & Harder, L. D. Ecology and evolution of plant mating. Trends Ecol. Evolut. 11, 73–79 (1996).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Elzinga, J. A. et al. Time after time: flowering phenology and biotic interactions. Trends Ecol. Evol. 22, 432–439 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Huang, S.-Q., Xiong, Y.-Z. & Barrett, S. C. H. Experimental evidence of insect pollination in Juncaceae, a primarily wind-pollinated family. Int. J. Plant Sci. 174, 1219–1228. https://doi.org/10.1086/673247 (2013).

    Article 

    Google Scholar 

  • 18.

    Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article 

    Google Scholar 

  • 19.

    Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10, 710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    Winfree, R., Griswold, T. & Kremen, C. Effect of human disturbance on bee communities in a forested ecosystem. Conserv. Biol. 21, 213–223. https://doi.org/10.1111/j.1523-1739.2006.00574.x (2007).

    Article 
    PubMed 

    Google Scholar 

  • 21.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).

    Article 

    Google Scholar 

  • 23.

    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014 (2009).

    Article 

    Google Scholar 

  • 24.

    Mayer, C. et al. Pollination ecology in the 21st century: key questions for future research. J. Pollinat. Ecol. 3, 8–23 (2011).

    Article 

    Google Scholar 

  • 25.

    Chavez, D. J. & Lyrene, P. M. Effects of self-pollination and cross-pollination of Vaccinium darrowii (Ericaceae) and other low-chill blueberries. Hortsci. Publ. Am. Soc. Hortic. Sci. 44, 1538–1541 (2009).

    Google Scholar 

  • 26.

    Negussie, A., Achten, W. M. J., Verboven, H. A. F., Hermy, M. & Muys, B. Floral display and effects of natural and artificial pollination on fruiting and seed yield of the tropical biofuel crop Jatropha curcas L. Global Change Biol. Bioenergy 6, 210–218 (2014).

    Article 

    Google Scholar 

  • 27.

    Okubo, S., Yamada, M., Yamaura, T. & Akita, T. Effects of the pistil size and self-incompatibility on fruit production in Curculigo latifolia (Liliaceae). J. Jpn. Soc. Hortic. Sci. 79, 354–359 (2010).

    Article 

    Google Scholar 

  • 28.

    Benjamin, F. E. & Winfree, R. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environ. Entomol. 43, 1574–1583 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Bennett, J. et al. A review of European studies on pollination networks and pollen limitation, and a case study designed to fill in a gap. AoB PLANTS https://doi.org/10.1093/aobpla/ply068 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Wang, H., Matsushita, M., Tomaru, N., Nakagawa, M. & Arroyo, J. Differences in female reproductive success between female and hermaphrodite individuals in the subdioecious shrub Eurya japonica (Theaceae). Plant Biol. 17, 194–200 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Wang, H., Matsushita, M., Tomaru, N. & Nakagawa, M. High male fertility in males of a subdioecious shrub in hand-pollinated crosses. AoB PLANTS 8, plw067 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Shou, C., Wang, J., Zheng, X. & Guo, D. Inhibitory effect of jujuboside A on penicillin sodium induced hyperactivity in rat hippocampal CA1 area in vitro. Acta Pharmacol. Sin. 22, 986–990 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Zhang, M. et al. Inhibitory effect of jujuboside A on glutamate-mediated excitatory signal pathway in hippocampus. Planta Med. 69, 692–695 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Yue, Y. et al. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function. Food Funct. 6, 2568–2577 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Han, D. et al. Jujuboside A protects H9C2 cells from isoproterenol-induced injury via activating PI3K/Akt/mTOR signaling pathway. Evidence-Based Complementary Alternative Medicine 2016 (2016).

  • 36.

    Lu, J., Liu, M., Mao, Y. & Shen, L. Effects of vesicular-arbuscular mycorrhizae on the drought resistance of wild jujube (Zizyphs spinosus Hu) seedlings. Front. Agric. China 1, 468–471 (2007).

    Article 

    Google Scholar 

  • 37.

    Zhang, S. et al. Threshold effects of photosynthetic efficiency parameters of wild jujube in response to soil moisture variation on shell beach ridges, Shandong, China. Plant Biosyst. 148, 140–149 (2014).

    Article 

    Google Scholar 

  • 38.

    Wang, Q. Y. The developments of embryo and endosperm of Zizyphus jujuba mill. J. Integr. Plant Biol. 25, 32–37 (1983).

    ADS 

    Google Scholar 

  • 39.

    Cruden, R. W. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31, 32–46. https://doi.org/10.1111/j.1558-5646.1977.tb00979.x (1977).

    Article 
    PubMed 

    Google Scholar 

  • 40.

    Dafni, A. Pollination ecology: A practical approach. (1992).

  • 41.

    Barrett, S. C. H. The evolution of mating strategies in flowering plants. Trends Plant Sci. 3, 335–341. https://doi.org/10.1016/s1360-1385(98)01299-0 (1998).

    Article 

    Google Scholar 

  • 42.

    Carr, D. E. & Dudash, M. R. Recent approaches into the genetic basis of inbreeding depression in plants. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 358, 1071–1084 (2003).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Lloyd, D. G. & Webb, C. The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. NZ J. Bot. 24, 135–162 (1986).

    Article 

    Google Scholar 

  • 44.

    Ren, M. Stamen movements in hermaphroditic flowers: diversity and adaptive significance. J. Plant Ecol. (Chin. Vers.) 34, 867–875 (2010).

    Google Scholar 

  • 45.

    Xiao, C.-L. et al. Sequential stamen maturation and movement in a protandrous herb: mechanisms increasing pollination efficiency and reducing sexual interference. AoB PLANTS 9, plx019. https://doi.org/10.1093/aobpla/plx019 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Nagy, E. S., Strong, L. & Galloway, L. F. Contribution of delayed autonomous selfing to reproductive success in mountain laurel, Kalmia latifolia (Ericaceae). Am. Midl. Nat. 142, 39–47 (1999).

    Article 

    Google Scholar 

  • 47.

    Liu, K.-W. et al. Pollination: self-fertilization strategy in an orchid. Nature 441, 945 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Ye, Z.-M., Jin, X.-F., Yang, J., Wang, Q.-F. & Yang, C.-F. Accurate position exchange of stamen and stigma by movement in opposite direction resolves the herkogamy dilemma in a protandrous plant, Ajuga decumbens (Labiatae). AoB PLANTS https://doi.org/10.1093/aobpla/plz052 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Brantjes, N. & De Vos, O. The explosive release of pollen in flowers of Hyptis (Lamiaceae). New Phytol. 87, 425–430 (1981).

    Article 

    Google Scholar 

  • 50.

    Guerrina, M., Casazza, G., Conti, E., Macrì, C. & Minuto, L. Reproductive biology of an Alpic paleo-endemic in a changing climate. J. Plant. Res. 129, 477–485 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Bawa, K. S. & Beach, J. H. Evolution of sexual systems in flowering plants. Ann. Mo. Bot. Garden 68, 254–274 (1981).

    Article 

    Google Scholar 

  • 52.

    Dietzsch, A. C., Stanley, D. A. & Stout, J. C. Relative abundance of an invasive alien plant affects native pollination processes. Oecologia 167, 469–479 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Ollerton, J. The evolution of pollinator-plant relationships within the arthropods. Evolution and phylogeny of the arthropoda. Entomology Society of Aragon, Zaragoza, 741–758 (1999).

  • 54.

    Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).

    Article 

    Google Scholar 

  • 55.

    Inouye, D. W., Larson, B. M., Ssymank, A. & Kevan, P. G. Flies and flowers III: ecology of foraging and pollination. J. Pollinat. Ecol. 16, 115–133 (2015).

    Google Scholar 

  • 56.

    Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P. D. & Woyciechowski, M. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. U.S.A. 113, 146–151 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Corbet, S. A. Pollination and the weather. Isr. J. Plant Sci. 39, 13–30 (1990).

    Google Scholar 

  • 58.

    Tuell, J. K. & Isaacs, R. Weather during bloom affects pollination and yield of highbush blueberry. J. Econ. Entomol. 103, 557–562 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 59.

    Ellis, C. R., Feltham, H., Park, K., Hanley, N. & Goulson, D. Seasonal complementary in pollinators of soft-fruit crops. Basic Appl. Ecol. 19, 45–55 (2017).

    Article 

    Google Scholar 

  • 60.

    Wang, W., Liu, Y., Chen, F.-D. & Dai, H.-G. Behavior and activity rhythm of flower-visiting insects on Chrysanthemum morifolium in Nanjing suburb. Shengtaixue Zazhi 27, 1167–1172 (2008).

    Google Scholar 

  • 61.

    Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. & Ollerton, J. Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060 (1996).

    Article 

    Google Scholar 

  • 62.

    Navarro-Pérez, M., López, J., Rodríguez-Riaño, T. & Ortega-Olivencia, A. Reproductive system of two Mediterranean Scrophularia species with large, showy flowers. Bot. Lett. 166, 467–477 (2019).

    Article 

    Google Scholar 

  • 63.

    Elle, E. Floral adaptations and biotic and abiotic selection pressures. Plant adaptation: Molecular genetics and ecology. National Research Council of Canada, Ottawa, Ontario, 111–118 (2004).

  • 64.

    Redmond, C. M. & Stout, J. C. Breeding system and pollination ecology of a potentially invasive alien Clematis vitalba L. Ireland. J. Plant Ecol. 11, 56–63. https://doi.org/10.1093/jpe/rtw137%JJournalofPlantEcology (2018).

    Article 

    Google Scholar 

  • 65.

    Byers, D. & Waller, D. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Ann. Rev. Ecol. Syst. 30, 479–513 (1999).

    Article 

    Google Scholar 

  • 66.

    Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding depression in plants I. Genetic models. Evolution 39, 24–40 (1985).

    PubMed 
    Article 

    Google Scholar 

  • 67.

    Zhang, C. et al. The genetic basis of inbreeding depression in potato. Nat. Genet. 51, 374–378 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Jones, C. E. & Little, R. J. Handbook of Experimental Pollination Biology (Scientific and Academic Editions, New York, 1983).

    Google Scholar 

  • 69.

    Liu, P. et al. Study on the biological basis of pollination in Chinese Jujube (Zizyphus jujuba) and Wild Jujube (Z. spinosa). Journal of Fruit Science 21(3), 224–228 (2004).

    Google Scholar 

  • 70.

    Sun, Y., Wu, C., Wang, D. & Wang, Z. Comparative Study on Floral Organ Structure, Pollen Morphology and Viability of Ziziphus acdiojujuba. Chin. Agric. Sci. Bull. 32(4), 87–91 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Engineering complex communities by directed evolution

    Crowdsourcing data on road quality and excess fuel consumption