in

A review and agenda for integrated disease models including social and behavioural factors

  • 1.

    Raude, J., McColl, K., Flamand, C. & Apostolidis, T. Understanding health behavior changes in response to outbreaks: findings from a longitudinal study of a large epidemic of mosquito-borne disease. Soc. Sci. Med. 230, 184–193 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Kapiriri, L. & Ross, A. The politics of disease epidemics: a comparative analysis of the SARS, Zika, and Ebola outbreaks. Glob. Soc. Welf. 7, 33–45 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Lewis, M. The economics of epidemics. Georget. J. Int. Aff. 2, 25–31 (2001).

    Google Scholar 

  • 4.

    Gelfand M. J. et al. The relationship between cultural tightness–looseness and COVID-19 cases and deaths: a global analysis. Lancet Planet. Health https://doi.org/10.1016/S2542-5196(20)30301-6 (2021).

  • 5.

    Marston, C., Renedo, A. & Miles, S. Community participation is crucial in a pandemic. Lancet 395, 1676–1678 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Shultz, J. M. et al. The role of fear-related behaviors in the 2013–2016 West Africa Ebola virus disease outbreak. Curr. Psychiatry Rep. 18, 104 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Abramowitz, S. et al. The opposite of denial: social learning at the onset of the Ebola emergency in Liberia. J. Health Commun. 22, 59–65 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Lee, C., Ayers, S. L. & Kronenfeld, J. J. The association between perceived provider discrimination, healthcare utilization and health status in racial and ethnic minorities. Ethn. Dis. 19, 330–337 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Fenton, J. J., Jerant, A. F., Bertakis, K. D. & Franks, P. The cost of satisfaction: a national study of patient satisfaction, health care utilization, expenditures, and mortality. Arch. Intern. Med. 172, 405–411 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Carter, S. E. et al. Barriers and enablers to treatment-seeking behavior and causes of high-risk practices in Ebola: a case study from Sierra Leone. J. Health Commun. 22, 31–38 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Kretzschmar, M. Disease modeling for public health: added value, challenges, and institutional constraints. J. Public Health Policy 41, 39–51 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Brauer, F. Mathematical epidemiology: past, present, and future. Infect. Dis. Model 2, 113–127 (2017).

    PubMed 

    Google Scholar 

  • 13.

    Chowell, G., Sattenspiel, L., Bansal, S. & Viboud, C. Mathematical models to characterize early epidemic growth: a review. Phys. Life Rev. 18, 66–97 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Polonsky, J. A. et al. Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180276 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Longini, I. M. Jr et al. Containing pandemic influenza at the source. Science 309, 1083–1087 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Zhang, Q. et al. Spread of Zika virus in the Americas. Proc. Natl Acad. Sci. USA. 114, E4334–E4343 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Chretien, J.-P., Riley, S. & George, D. B. Mathematical modeling of the West Africa Ebola epidemic. eLife 4, e09186 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Chowell, G. & Nishiura, H. Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Med. 12, 196 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Adam, D. Special report: the simulations driving the world’s response to COVID-19. Nature 580, 316–318 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Siegenfeld, A. F., Taleb, N. N. & Bar-Yam, Y. Opinion: what models can and cannot tell us about COVID-19. Proc. Natl Acad. Sci. USA 117, 16092–16095 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Manfredi, P. & D’Onofrio, A., eds. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (Springer-Verlag, 2013).

  • 22.

    Philipson, T. in Handbook of Health Economics (eds Culyer, A. and Newhouse, J.) Vol. 1, Ch. 33, 1761–1799 (Elsevier, 2000).

  • 23.

    Abramowitz, S. A., Hipgrave, D. B., Witchard, A. & Heymann, D. L. Lessons from the West Africa Ebola epidemic: a systematic review of epidemiological and social and behavioral science research priorities. J. Infect. Dis. 218, 1730–1738 (2018).

    PubMed 

    Google Scholar 

  • 24.

    Bedford, J. et al. Application of social science in the response to Ebola, Equateur Province, Democratic Republic of the Congo/Application des sciences sociales dans la riposte a la maladie a virus Ebola, province de l’Equateur, Republique democratique du Congo. Wkly Epidemiological Rec. 94, 19–24 (2019).

    Google Scholar 

  • 25.

    Norton, A. et al. A living mapping review for COVID-19 funded research projects: six-month update [version 3; peer review: 2 approved]. Wellcome Open Res. 5, 209 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 26.

    Pedi, D. et al. The development of standard operating procedures for social mobilization and community engagement in sierra leone during the West Africa Ebola outbreak of 2014-2015. J. Health Commun. 22, 39–50 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    RCCE Collective Service. Operational guide for engaging communities in contact tracing World Health Organization (2021); https://apps.who.int/iris/bitstream/handle/10665/341553/WHO-2019-nCoV-Contact_tracing-Community_engagement-2021.1-eng.pdf?sequence=1

  • 28.

    Cellules d’Analyses en Sciences Sociales (CASS). Social Science Support for COVID-19: Lessons Learned Brief 3 7 (2020); https://www.unicef.org/drcongo/media/4131/file/CASS-Brief3-recommendations.pdf

  • 29.

    Xepapadeas, A. The spatial dimension in environmental and resource economics. Environ. Dev. Econ. 15, 747–758 (2010).

    Article 

    Google Scholar 

  • 30.

    Reed, M. S. et al. What is social learning? Ecol. Soc. 15, r1 (2010).

    Article 

    Google Scholar 

  • 31.

    Kermack, W. O., McKendrick, A. G. & Walker, G. T. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927).

    Article 

    Google Scholar 

  • 32.

    Influenza in a boarding school. Brit. Med. J. 1, 587–587 (1978).

  • 33.

    Funk, S., Salathé, M. & Jansen, V. A. A. Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7, 1247–1256 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Eksin, C., Paarporn, K. & Weitz, J. S. Systematic biases in disease forecasting-the role of behavior change. Epidemics 27, 96–105 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Bedford, J. et al. A new twenty-first century science for effective epidemic response. Nature 575, 130–136 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Verelst, F., Willem, L. & Beutels, P. Behavioural change models for infectious disease transmission: a systematic review (2010-2015). J. R. Soc. Interface https://doi.org/10.1098/rsif.2016.0820 (2016).

  • 37.

    Weston, D., Hauck, K. & Amlôt, R. Infection prevention behaviour and infectious disease modelling: a review of the literature and recommendations for the future. BMC Public Health 18, 336 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Gersovitz, M. The economics of infection control. Annu. Rev. Resour. Econ. 3, 277–296 (2011).

    Article 

    Google Scholar 

  • 39.

    Perrings, C. et al. Merging economics and epidemiology to improve the prediction and management of infectious disease. Ecohealth 11, 464–475 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Althouse, B. M., Bergstrom, T. C. & Bergstrom, C. T. Evolution in health and medicine Sackler colloquium: a public choice framework for controlling transmissible and evolving diseases. Proc. Natl Acad. Sci. USA 107, 1696–1701 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Ward, C. J. Influenza vaccination campaigns: is an ounce of prevention worth a pound of cure? Am. Econ. J. Appl. Econ. 6, 38–72 (2014).

    Article 

    Google Scholar 

  • 42.

    Fenichel, E. P. Economic considerations for social distancing and behavioral based policies during an epidemic. J. Health Econ. 32, 440–451 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Acemoglu, D., Chernozhukov, V., Werning, I. & Whinston, M. D. Optimal Targeted Lockdowns in a Multi-Group SIR Model Working Paper 27102 (National Bureau of Economic Research, 2020); https://doi.org/10.3386/w27102

  • 44.

    Ahituv, A., Hotz, V. J. & Philipson, T. The responsiveness of the demand for condoms to the local prevalence of AIDS. J. Hum. Resour. 31, 869–897 (1996).

    Article 

    Google Scholar 

  • 45.

    Kremer, M. Integrating behavioral choice into epidemiological models of AIDS. Q. J. Econ. 111, 549–573 (1996).

    Article 

    Google Scholar 

  • 46.

    Justwan, F., Baumgaertner, B., Carlisle, J. E., Carson, E. & Kizer, J. The effect of trust and proximity on vaccine propensity. PLoS ONE 14, e0220658 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Chen, F. H. Rational behavioral response and the transmission of STDs. Theor. Popul. Biol. 66, 307–316 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 48.

    Geoffard, P.-Y. & Philipson, T. Rational epidemics and their public control. Int. Econ. Rev. 37, 603–624 (1996).

    Article 

    Google Scholar 

  • 49.

    Fenichel, E. P. et al. Adaptive human behavior in epidemiological models. Proc. Natl Acad. Sci. USA 108, 6306 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Morin, B. R., Fenichel, E. P. & Castillo-Chavez, C. SIR dynamics with economically driven contact rates. Nat. Resour. Model. 26, 505–525 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Fenichel, E. P., Kuminoff, N. V. & Chowell, G. Skip the trip: air travelers’ behavioral responses to pandemic influenza. PLoS ONE 8, e58249 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Hung, Y. W. et al. Impact of a free care policy on the utilisation of health services during an Ebola outbreak in the Democratic Republic of Congo: an interrupted time-series analysis. BMJ Glob. Health 5, e002119 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Modeling Anthropogenic Effects in the Spread of Infectious Diseases (MASpread) Project. EcoServices: Disease Risks. Arizona State University (Accessed 17 April 2021); http://ecoservices.asu.edu/Diseaserisks/DRindex.html

  • 54.

    Morris, M. Network Epidemiology: A Handbook for Survey Design and Data Collection (OUP, 2004).

  • 55.

    Meyers, L. Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bull. Am. Math. Soc. 44, 63–86 (2007).

    Article 

    Google Scholar 

  • 56.

    Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015).

    Article 

    Google Scholar 

  • 57.

    Wang, Z. et al. Statistical physics of vaccination. Phys. Rep. 664, 1–113 (2016).

    Article 

    Google Scholar 

  • 58.

    Cohen, R., Havlin, S. & Ben-Avraham, D. Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Salathé, M. & Jones, J. H. Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6, e1000736 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 60.

    Hébert-Dufresne, L., Allard, A., Young, J.-G. & Dubé, L. J. Global efficiency of local immunization on complex networks. Sci. Rep. 3, 2171 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Rosenblatt, S. F., Smith, J. A., Gauthier, G. R. & Hébert-Dufresne, L. Immunization strategies in networks with missing data. PLoS Comput. Biol. 16, e1007897 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Funk, S., Gilad, E., Watkins, C. & Jansen, V. A. A. The spread of awareness and its impact on epidemic outbreaks. Proc. Natl Acad. Sci. USA 106, 6872–6877 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Funk, S. & Jansen, V. A. A. Interacting epidemics on overlay networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036118 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Hébert-Dufresne, L., Mistry, D. & Althouse, B. M. Spread of infectious disease and social awareness as parasitic contagions on clustered networks. Phys. Rev. Res. 2, 033306 (2020).

    Article 

    Google Scholar 

  • 65.

    Marceau, V., Noël, P.-A., Hébert-Dufresne, L., Allard, A. & Dubé, L. J. Modeling the dynamical interaction between epidemics on overlay networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 026105 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 66.

    Fu, F., Christakis, N. A. & Fowler, J. H. Dueling biological and social contagions. Sci. Rep. 7, 43634 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 67.

    Granell, C., Gómez, S. & Arenas, A. Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 012808 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Fan, C.-J. et al. Effect of individual behavior on the interplay between awareness and disease spreading in multiplex networks. Phys. A 461, 523–530 (2016).

    Article 

    Google Scholar 

  • 69.

    Scatà, M., Di Stefano, A., Liò, P. & La Corte, A. The impact of heterogeneity and awareness in modeling epidemic spreading on multiplex networks. Sci. Rep. 6, 37105 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Wang, W. et al. Suppressing disease spreading by using information diffusion on multiplex networks. Sci. Rep. 6, 29259 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Zheng, C., Xia, C., Guo, Q. & Dehmer, M. Interplay between SIR-based disease spreading and awareness diffusion on multiplex networks. J. Parallel Distrib. Comput. 115, 20–28 (2018).

    Article 

    Google Scholar 

  • 72.

    Gross, T. & Blasius, B. Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 73.

    Gross, T. & Sayama, H. in Adaptive Networks: Theory, Models and Applications (eds Gross, T. & Sayama, H.) 1–8 (Springer, 2009).

  • 74.

    Wang, Z., Andrews, M. A., Wu, Z.-X., Wang, L. & Bauch, C. T. Coupled disease–behavior dynamics on complex networks: a review. Phys. Life Rev. 15, 1–29 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Valdez, L. D., Macri, P. A. & Braunstein, L. A. Intermittent social distancing strategy for epidemic control. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85, 036108 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Tunc, I., Shkarayev, M. S. & Shaw, L. B. Epidemics in adaptive social networks with temporary link deactivation. J. Stat. Phys. 151, 355–366 (2013).

    Article 

    Google Scholar 

  • 77.

    Epstein, J. M., Parker, J., Cummings, D. & Hammond, R. A. Coupled contagion dynamics of fear and disease: mathematical and computational explorations. PLoS ONE 3, e3955 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 78.

    Kiss, I. Z., Cassell, J., Recker, M. & Simon, P. L. The impact of information transmission on epidemic outbreaks. Math. Biosci. 225, 1–10 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 79.

    Gross, T., D’Lima, C. J. D. & Blasius, B. Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 80.

    Zanette, D. H. & Risau-Gusmán, S. Infection spreading in a population with evolving contacts. J. Biol. Phys. 34, 135–148 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Marceau, V., Noël, P.-A., Hébert-Dufresne, L., Allard, A. & Dubé, L. J. Adaptive networks: coevolution of disease and topology. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 036116 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 82.

    Shaw, L. B. & Schwartz, I. B. Enhanced vaccine control of epidemics in adaptive networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 046120 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 83.

    Althouse, B. M. & Hébert-Dufresne, L. Epidemic cycles driven by host behaviour. J. R. Soc. Interface https://doi.org/10.1098/rsif.2014.0575 (2014).

  • 84.

    Scarpino, S. V., Allard, A. & Hébert-Dufresne, L. The effect of a prudent adaptive behaviour on disease transmission. Nat. Phys. 12, 1042–1046 (2016).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Shaw, L. B. & Schwartz, I. B. Fluctuating epidemics on adaptive networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77, 066101 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 86.

    Sayama, H. et al. Modeling complex systems with adaptive networks. Comput. Math. Appl. 65, 1645–1664 (2013).

    Article 

    Google Scholar 

  • 87.

    Do, A.-L., Rudolf, L. & Gross, T. Patterns of cooperation: fairness and coordination in networks of interacting agents. N. J. Phys. 12, 063023 (2010).

    Article 

    Google Scholar 

  • 88.

    Van Segbroeck, S., Santos, F. C., Lenaerts, T. & Pacheco, J. M. Selection pressure transforms the nature of social dilemmas in adaptive networks. N. J. Phys. 13, 013007 (2011).

    Article 

    Google Scholar 

  • 89.

    Zhan, X.-X. et al. Coupling dynamics of epidemic spreading and information diffusion on complex networks. Appl. Math. Comput. 332, 437–448 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Hatfield, E., Cacioppo, J. T. & Rapson, R. L. Emotional contagion. Curr. Dir. Psychol. Sci. 2, 96–100 (1993).

    Article 

    Google Scholar 

  • 91.

    Epstein, J. M. Agent_Zero: Toward Neurocognitive Foundations for Generative Social Science (Princeton Univ. Press, 2014).

  • 92.

    Barton, C. M. et al. Call for transparency of COVID-19 models. Science 368, 482–483 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 93.

    Hammond, R., Ornstein, J. T., Purcell, R., Haslam, M. D., & Kasman, M. Modeling robustness of COVID-19 containment policies. Preprint at OSF https://doi.org/10.31219/osf.io/h5ua7 (2021).

  • 94.

    Cooley, P. C. et al. The model repository of the models of infectious disease agent study. IEEE Trans. Inf. Technol. Biomed. 12, 513–522 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Eubank, S. et al. Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 96.

    Burke, D. S. et al. Individual-based computational modeling of smallpox epidemic control strategies. Acad. Emerg. Med. 13, 1142–1149 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 97.

    Ferguson, N. M. et al. Strategies for mitigating an influenza pandemic. Nature 442, 448–452 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 98.

    Germann, T. C., Kadau, K., Longini, I. M. Jr & Macken, C. A. Mitigation strategies for pandemic influenza in the United States. Proc. Natl Acad. Sci. USA 103, 5935–5940 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Longini, I. M. Jr et al. Containing a large bioterrorist smallpox attack: a computer simulation approach. Int. J. Infect. Dis. 11, 98–108 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 100.

    Hammond, R. A. Considerations and Best Practices in Agent-Based Modeling to Inform Policy (National Academies Press, 2015).

  • 101.

    Wallace, R et al. Assessing the Use of Agent-Based Models for Tobacco Regulation (National Academies Press, 2015).

  • 102.

    Pedro, S. A. et al. Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes. Front. Phys. 8, 574514 (2020).

    Article 

    Google Scholar 

  • 103.

    Walters, C. E., Meslé, M. M. I. & Hall, I. M. Modelling the global spread of diseases: a review of current practice and capability. Epidemics 25, 1–8 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Li, Y., Lawley, M. A., Siscovick, D. S., Zhang, D. & Pagán, J. A. Agent-based modeling of chronic diseases: a narrative review and future research directions. Prev. Chronic Dis. 13, E69 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Weston, D., Ip, A. & Amlôt, R. Examining the application of behaviour change theories in the context of infectious disease outbreaks and emergency response: a review of reviews. BMC Public Health 20, 1483 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 106.

    Ripoll, S., Gercama, I., Jones, T. & Wilkinson, A. Social Science in Epidemics: Ebola Virus Disease Lessons Learned Background Report, UNICEF, IDS & Anthrologica https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/14160 (Institute of Development Studies, 2018).

  • 107.

    DuBois, M., Wake, C., Sturridge, S. & Bennett, C. The Ebola Response in West Africa: Exposing the Politics and Culture of International Aid (Overseas Development Institute, 2015).

  • 108.

    Hird, T. et al. Lessons From Ebola Affected Communities: Being Prepared for Future Health Crises (Africa All Party Parliamentary Group, 2016).

  • 109.

    WHO. Report of the Ebola Interim Assessment Panel—July 2015 (2020).

  • 110.

    Ashworth, H. C., Dada, S., Buggy, C. & Lees, S. The importance of developing rigorous social science methods for community engagement and behavior change during outbreak response. Disaster Med. Public Health Prep. 1–6 (2020).

  • 111.

    Wenham, C. et al. Women are most affected by pandemics—lessons from past outbreaks. Nature 583, 194–198 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 112.

    Schwartz, D. A., Anoko, J. N. & Abramowitz, S. A. Pregnant in the Time of Ebola: Women and Their Children in the 2013-2015 West African Epidemic (Springer International Publishing, 2019).

  • 113.

    Moore, M. D. Historicising ‘containment and delay’: COVID-19, the NHS and high-risk patients. Wellcome Open Res. 5, 130 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 114.

    Marcis, F. L., Enria, L., Abramowitz, S., Saez, A.-M. & Faye, S. L. B. Three acts of resistance during the 2014–16 West Africa Ebola epidemic. J. Humanitarian Aff. 1, 23–31 (2019).

    Article 

    Google Scholar 

  • 115.

    Parker, M., Hanson, T. M., Vandi, A., Babawo, L. S. & Allen, T. Ebola and public authority: saving loved ones in Sierra Leone. Med. Anthropol. 38, 440–454 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 116.

    Vinck, P., Pham, P. N., Bindu, K. K., Bedford, J. & Nilles, E. J. Institutional trust and misinformation in the response to the 2018–19 Ebola outbreak in North Kivu, DR Congo: a population-based survey. Lancet Infect. Dis. 19, 529–536 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 117.

    Ripoll, S., Gercama, I. & Jones, T. Rapid Appraisal of Key Health-Seeking Behaviours in Epidemics. SSHAP Practical Approaches brief 5, UNICEF, IDS & Anthrologica https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/15430 (Institute of Development Studies, 2020).

  • 118.

    Bielicki, J. A. et al. Monitoring approaches for health-care workers during the COVID-19 pandemic. Lancet Infect. Dis. 20, e261–e267 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 119.

    Chu, I. Y.-H., Alam, P., Larson, H. J. & Lin, L. Social consequences of mass quarantine during epidemics: a systematic review with implications for the COVID-19 response. J. Travel Med. 27, taaa192 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 120.

    R&D Good Participatory Practice for COVID-19 Clinical Trials: a Toolbox (World Health Organization, 2020); https://www.who.int/publications/m/item/r-d-good-participatory-practice-for-covid-19-clinical-trials-a-toolbox

  • 121.

    Hankins, C. Good Participatory Practice Guidelines for Trials of Emerging (and Re-emerging) Pathogens That are Likely to Cause Severe Outbreaks in the Near Future and For Which Few or No Medical Countermeasures Exist (GPP-EP) (WHO, 2016).

  • 122.

    Sigfrid, L. et al. Addressing challenges for clinical research responses to emerging epidemics and pandemics: a scoping review. BMC Med. 18, 190 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 123.

    Gobat, N. H. et al. Talking to the people that really matter about their participation in pandemic clinical research: a qualitative study in four European countries. Health Expect. 21, 387–395 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 124.

    Richards, P. et al. Social pathways for ebola virus disease in rural Sierra Leone, and some implications for containment. PLoS Negl. Trop. Dis. 9, e0003567 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 125.

    Jalloh, M. F. et al. National survey of Ebola-related knowledge, attitudes and practices before the outbreak peak in Sierra Leone: August 2014. BMJ Glob. Health 2, e000285 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 126.

    Bedford, J. Social science and behavioral data compilation, DRC Ebola outbreak, November 2018 – February 2019. Social Science in Humanitarian Action and GOARN Research Social Science Group (2019); https://opendocs.ids.ac.uk/opendocs/bitstream/handle/20.500.12413/14144/SSHAP_data_compilation_brief_November_2018_updated.pdf

  • 127.

    Pinchoff, J. et al. Evidence-based process for prioritizing positive behaviors for promotion: Zika prevention in Latin America and the Caribbean and applicability to future health emergency responses. Glob. Health Sci. Pr. 7, 404–417 (2019).

    Article 

    Google Scholar 

  • 128.

    Guirguis, S., Obregon, R., Coleman, M., Hickler, B. & SteelFisher, G. Placing human behavior at the center of the fight to eradicate polio: lessons learned and their application to other life-saving interventions. J. Infect. Dis. 216, S331–S336 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 129.

    Research Guides: Social Science Data Resources: COVID-19 https://guides.library.yale.edu/covid19impacts (Accessed 17 April 2021).

  • 130.

    Rohan, H., Bausch, D. G. & Blanchet, K. Action not justification: how to use social science to improve outbreak response. PLoS Blogs (2018); https://collectionsblog.plos.org/action-not-justification-how-to-use-social-science-to-improve-outbreak-response/

  • 131.

    Bardosh, K. et al. Towards People-Centred Epidemic Preparedness and Response: From Knowledge to Action (Wellcome/DFID, 2019).

  • 132.

    UNICEF Minimum Quality Standards and Indicators for Community Engagement. Guidance Towards High Quality, Evidence-Based Community Engagement in The Development and Humanitarian Contexts. (2020); https://www.unicef.org/mena/reports/community-engagement-standards

  • 133.

    Hennessey Lavery, S. et al. The community action model: a community-driven model designed to address disparities in health. Am. J. Public Health 95, 611–616 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 134.

    Boyce, M. R. & Katz, R. Community health workers and pandemic preparedness: current and prospective roles. Front. Public Health 7, 62 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 135.

    Baggio, O. Real-Time Ebola Community Feedback Mechanism (SSHAP Case Study 10, UNICEF, IDS and Anthrologica, 2020).

  • 136.

    Collective Communication and Community Engagement in Humanitarian Action: How to Guide for Leaders and Responders (CDAC Network, 2019).

  • 137.

    Ackerman Gulaid, L. & Kiragu, K. Lessons learnt from promising practices in community engagement for the elimination of new HIV infections in children by 2015 and keeping their mothers alive: summary of a desk review. J. Int. AIDS Soc. 15, 17390 (2012).

    PubMed 

    Google Scholar 

  • 138.

    Gilmore, B. et al. Community engagement for COVID-19 prevention and control: a rapid evidence synthesis. BMJ Glob. Health 5, e003188 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 139.

    O’Mara-Eves, A. et al. The effectiveness of community engagement in public health interventions for disadvantaged groups: a meta-analysis. BMC Public Health 15, 129 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 140.

    Milton, B., Attree, P., French, B., Povall, S. L. & Popay, J. The impact of community engagement on health and social outcomes: a systematic review. 47, 316–334 (2011).

  • 141.

    Abramowitz, S. et al. Data Sharing in Public Health Emergencies: Anthropological and Historical Perspectives on Data Sharing During the 2014-2016 Ebola Epidemic and the 2016 Yellow Fever Epidemic (Wellcome Trust, 2018); https://www.glopid-r.org/wp-content/uploads/2019/07/data-sharing-in-public-health-emergencies-yellow-fever-and-ebola.pdf

  • 142.

    Bedson, J. et al. Community engagement in outbreak response: lessons from the 2014-2016 Ebola outbreak in Sierra Leone. BMJ Glob. Health 5, e002145 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 143.

    Jalloh, M. Design and implementation of an integrated digital system for community engagement and community-based surveillance during the 2014-2016 Ebola outbreak in Sierra Leone. BMJ Global Health 5, e003936 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 144.

    McComas, K. A. Defining moments in risk communication research: 1996-2005. J. Health Commun. 11, 75–91 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 145.

    Glik, D. C. Risk communication for public health emergencies. Annu. Rev. Public Health 28, 33–54 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 146.

    WHO General Information on Risk Communication (2015).

  • 147.

    Tworek, H., Beacock, I. & Ojo, E. Democratic health communications during Covid-19: a RAPID response (UBC Centre for the Study of Democratic Institutions, 2020); https://democracy.arts.ubc.ca/2020/09/14/covid-19/

  • 148.

    Winters, M. et al. Risk communication and ebola-specific knowledge and behavior during 2014-2015 outbreak, Sierra Leone. Emerg. Infect. Dis. 24, 336–344 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 149.

    Novetta. Social Media Analysis of ‘Tu vois Les Retombées’ Facebook Page (Insecurity Insight, 2020); http://insecurityinsight.org/wp-content/uploads/2020/06/Social-Media-Analysis-Novetta-June-2020.pdf

  • 150.

    Ghenai, A. & Mejova, Y. Catching Zika Fever: Application of Crowdsourcing and Machine Learning for Tracking Health Misinformation on Twitter. Preprint at arXiv https://arxiv.org/abs/1707.03778 (2017).

  • 151.

    Taggart, T., Grewe, M. E., Conserve, D. F., Gliwa, C. & Roman Isler, M. Social media and HIV: a systematic review of uses of social media in HIV communication. J. Med. Internet Res. 17, e248 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 152.

    Smith, R. D. Responding to global infectious disease outbreaks: lessons from SARS on the role of risk perception, communication and management. Soc. Sci. Med. 63, 3113–3123 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 153.

    Li, C. et al. Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020. Euro Surveill. 25, 2000199 (2020).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 154.

    Lu, Y. & Zhang, L. Social media WeChat infers the development trend of COVID-19. J. Infect. 81, e82–e83 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 155.

    Effenberger, M. et al. Association of the COVID-19 pandemic with Internet search volumes: a Google TrendsTM Analysis. Int. J. Infect. Dis. 95, 192–197 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 156.

    Gallotti, R., Valle, F., Castaldo, N., Sacco, P. & De Domenico, M. Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics. Nat. Hum. Behav. 4, 1285–1293 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 157.

    Bhattacharjee, S. & Dotto, C. Case study: understanding the impact of polio vaccine disinformation in Pakistan. First Draft (20 February 2020); https://firstdraftnews.org/long-form-article/first-draft-case-study-understanding-the-impact-of-polio-vaccine-disinformation-in-pakistan/

  • 158.

    Krause, N. M., Freiling, I., Beets, B. & Brossard, D. Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19. J. Risk Res. 23, 1052–1059 (2020).

    Article 

    Google Scholar 

  • 159.

    Eysenbach, G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J. Med. Internet Res. 11, e11 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 160.

    Eysenbach, G. Infodemiology: the epidemiology of (mis)information. Am. J. Med. 113, 763–765 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 161.

    Islam, M. S. et al. COVID-19-related infodemic and its impact on public health: a global social media analysis. Am. J. Trop. Med. Hyg. 103, 1621–1629 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 162.

    Funk, S. et al. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics 10, 21–25 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 163.

    Davis, P. K., O’Mahony, A., Gulden, T. R., Sieck, K. & Osoba, O. A. Priority Challenges for Social and Behavioral Research and Its Modeling (RAND, 2018).

  • 164.

    WHO Guidance For Managing Ethical Issues In Infectious Disease Outbreaks (2016).

  • 165.

    Bruine de Bruin, W., Parker, A. M., Galesic, M. & Vardavas, R. Reports of social circles’ and own vaccination behavior: a national longitudinal survey. Health Psychol. 38, 975–983 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 166.

    Facebook. COVID-19 Interactive Map & Dashboard (Accessed 14 April 2020); https://dataforgood.facebook.com/covid-survey/?region=WORLD

  • 167.

    Pruyt, E., Auping, W. L. & Kwakkel, J. H. Ebola in west Africa: model-based exploration of social psychological effects and interventions: Ebola in West Africa. Syst. Res. Behav. Sci. 32, 2–14 (2015).

    Article 

    Google Scholar 

  • 168.

    Schmidt-Hellerau, K. et al. Homecare for sick family members while waiting for medical help during the 2014-2015 Ebola outbreak in Sierra Leone: a mixed methods study. BMJ Glob. Health 5, e002732 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 169.

    Baggio, O. Case Study, Real-Time Ebola Community Feedback Mechanism (Social Science in Humanitarian Action, 2020); https://core.ac.uk/download/pdf/326024204.pdf

  • 170.

    WHO, UNICEF and IFRC. The Collective Service (2020); https://www.who.int/teams/risk-communication/the-collective-service

  • 171.

    WHO. COVID-19 Knowledge Hub (2020); https://extranet.who.int/goarn/COVID19Hub

  • 172.

    Giles-Vernick, T. et al. A new social sciences network for infectious threats. Lancet Infect. Dis. 19, 461–463 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 173.

    Preventive Health Survey (Facebook, 2020); https://dataforgood.fb.com/tools/preventive-health-survey/

  • 174.

    COVID-19 Community Mobility Reports (Google, 2020).

  • 175.

    Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis. 20, 1247–1254 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 176.

    WHO. Early AI-supported Response with Social Listening (2020); https://whoinfodemic.citibeats.com/?cat=fYJ1oBNEUQtfbExrkGvsyr

  • 177.

    WHO. Ebola or Marburg Case Investigation and Recording Sheet (16 June 2020); https://www.who.int/publications/m/item/ebola-or-marburg-case-investigation-and-recording-sheet

  • 178.

    CDC. Investigating a COVID-19 Case (2020); https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/investigating-covid-19-case.html

  • 179.

    WHO. Disease Case Investigation Forms (Accessed 14 April 2021); https://www.who.int/emergencies/outbreak-toolkit/data-collection-standards/disease-case-investigation-forms

  • 180.

    Social Science Support for COVID-19: Lessons Learned Brief 1 (Cellule D’analyse en Sciences Sociales, 2020).

  • 181.

    Rivers, C., Pollett, S. & Viboud, C. The opportunities and challenges of an Ebola modeling research coordination group. PLoS Negl. Trop. Dis. 14, e0008158 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 182.

    WHO. Global Health Observatory (Accessed 14 April 2021); https://www.who.int/data/gho

  • 183.

    Data Portal (RCCE Collective Service: Risk Communication and Community Engagement, 2020); https://www.rcce-collective.net/data/

  • 184.

    Richards, P. Ebola: How a People’s Science Helped End an Epidemic (Zed Books, 2016).

  • 185.

    Social Science in Humanitarian Action Platform Social Science in Humanitarian Action, Key Considerations: Engaging Twa communities in Equateur Province (2018).

  • 186.

    Heesterbeek, H. et al. Modeling infectious disease dynamics in the complex landscape of global health. Science 347, aaa4339 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 187.

    Skrip, L., Fallah, M. P., Bedson, J., Hébert-Dufresne, L. & Althouse, B. M. Coordinated support for local action: a modeling study of strategies to facilitate behavior adoption in urban poor communities of Liberia for sustained COVID-19 suppression. Preprint at medRxiv https://doi.org/10.1101/2020.08.11.20172031 (2020).

  • 188.

    Online Database of Training on Social Dimensions of Infectious Threats (Sonar Global, Accessed 14 April 2021); https://www.sonar-global.eu/trainings/

  • 189.

    OpenWHO. https://openwho.org (Accessed 14 April 2021).

  • 190.

    Gwynn, S. Access to Research in the Global South: Reviewing the Evidence (International Network for the Availability of Scientific Publications, 2019).

  • 191.

    Urassa, M. et al. Cross-cultural research must prioritize equitable collaboration. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01076-x (2021).

  • 192.

    Bonino, F., Jean, I. & Knox-Clarke, P. Closing the Loop: Effective Feedback in Humanitarian Contexts (ALNAP/ODI, 2014).

  • 193.

    Metcalf, C. J. E., Edmunds, W. J. & Lessler, J. Six challenges in modelling for public health policy. Epidemics 10, 93–96 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 194.

    Cobey, S. Modeling infectious disease dynamics. Science 368, 713–714 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 195.

    Ordway, D.-M. Epidemiological Models: 10 Things to Know About Coronavirus Research (Harvard Kennedy School, 2020); https://journalistsresource.org/tip-sheets/research/epidemiological-models-coronavirus/

  • 196.

    Knight, G. M. et al. Bridging the gap between evidence and policy for infectious diseases: how models can aid public health decision-making. Int. J. Infect. Dis. 42, 17–23 (2016).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Engineered yeast could expand biofuels’ reach

    Insights into rumen microbial biosynthetic gene cluster diversity through genome-resolved metagenomics