in

A simple and effective approach to quantitatively characterize structural complexity

  • 1.

    Zenner, E. Does old-growth condition imply high live-tree structural complexity?. For. Ecol. Manag. 195, 243–258 (2004).

    Article  Google Scholar 

  • 2.

    Forest Ecosystem Management Assessment Team (FEMAT). Draft Supplemental Environmental Impact Statement on Management of Habitat for Late Successional and Oldgrowth Forest Related Species within the Range of the Northern Spotted Owl (US Government Printing Office, Washington, DC, 1993).

    Google Scholar 

  • 3.

    Wan, P. et al. Impacts of different forest management methods on the stand spatial structure of a natural Quercus aliena var. acuteserrata forest in Xiaolongshan, China. Ecol. Inform. 50, 86–94 (2019).

    Article  Google Scholar 

  • 4.

    Carrer, M., Castagneri, D., Popa, I., Pividori, M. & Lingua, E. Tree spatial patterns and stand attributes in temperate forests: The importance of plot size, sampling design, and null model. For. Ecol. Manag. 407, 125–134 (2018).

    Article  Google Scholar 

  • 5.

    Bauhus, J., Puettmann, K. & Messier, C. Silviculture for old-growth attributes. For. Ecol. Manag. 258, 525–537 (2009).

    Article  Google Scholar 

  • 6.

    Messier, C., Puettmann, K. J. & Coates, D. K. Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change (Routledge, Abingdon, 2013).

    Google Scholar 

  • 7.

    McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manage. 218, 1–24 (2005).

    Article  Google Scholar 

  • 8.

    Di Filippo, A., Biondi, F., Piovesan, G. & Ziaco, E. Tree ring-based metrics for assessing old-growth forest naturalness. J. Appl. Ecol. 54, 737–749 (2017).

    Article  Google Scholar 

  • 9.

    Parrotta, J. A., Turnbull, J. W. & Jones, N. Catalyzing native forest regeneration on degraded tropical lands. For. Ecol. Manag. 99, 1–7 (1997).

    Article  Google Scholar 

  • 10.

    Neumann, M. & Starlinger, F. The significance of different indices for stand structure and diversity in forests. For. Ecol. Manag. 145, 91–106 (2001).

    Article  Google Scholar 

  • 11.

    McCleary, K. & Mowat, G. Using forest structural diversity to inventory habitat diversity of forest-dwelling wildlife in the West Kootenay region of British Columbia 2 1–13 (2002).

  • 12.

    Ishii, H. T., Tanabe, S.-I. & Hiura, T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. For. Sci. 50, 342–355 (2004).

    Google Scholar 

  • 13.

    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).

    Article  Google Scholar 

  • 14.

    Long, J. N. & Shaw, J. D. The influence of compositional and structural diversity on forest productivity. Forestry 83, 121–128 (2010).

    Article  Google Scholar 

  • 15.

    Dănescu, A., Albrecht, A. & Bauhus, J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 182, 319–333 (2016).

    ADS  PubMed  Article  Google Scholar 

  • 16.

    Ehbrecht, M., Schall, P., Ammer, C. & Seidel, D. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric. For. Meteorol. 242, 1–9 (2017).

    ADS  Article  Google Scholar 

  • 17.

    Zenner, E. K. Do residual trees increase structural complexity in pacific northwest?. Ecol. Appl. 10, 800–810 (2000).

    Article  Google Scholar 

  • 18.

    Hardiman, B. S., Bohrer, G., Gough, C. M., Vogel, C. S. & Curtisi, P. S. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92, 1818–1827 (2011).

    PubMed  Article  Google Scholar 

  • 19.

    Puettmann, K. J., Coates, K. D. & Messier, C. C. A Critique of Silviculture: Managing for Complexity (Island Press, Washington, D.C., 2012).

    Google Scholar 

  • 20.

    Robertson, G. P. & Tiedje, J. Spatial variability in a successional plant community: patterns of nitrogen availability. Ecology 69, 0–1524 (1988).

  • 21.

    Palmer, M. W. Spatial scale and patterns of species-environment relationships in hardwood forest of the North Carolina piedmont. Coenoses, 79–87 (1990).

  • 22.

    Lechowicz, M. & Bell, G. The ecology and genetics of fitness in forest plants. II. Microspatial heterogeneity of the edaphic environment. J. Ecol. 79, 687 (1991).

  • 23.

    Song, B. et al. Modeling canopy structure and heterogeneity across scales: from crowns to canopy. For. Ecol. Manage. 96, 217–229 (1997).

    Article  Google Scholar 

  • 24.

    Zenner, E. & Peck, J. Characterizing structural conditions in mature managed red pine: spatial dependency of metrics and adequacy of plot size. For. Ecol. Manag. 257, 311–320 (2009).

    Article  Google Scholar 

  • 25.

    Pommerening, A. & Uria-Diez, J. Do large forest trees tend towards high species mingling? Ecol. Inform. 42 (2017).

  • 26.

    Wang, H., Peng, H., Hui, G., Hu, Y. & Zhao, Z. Large trees are surrounded by more heterospecific neighboring trees in Korean pine broad-leaved natural forests. Sci. Rep. 8, 9149 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 27.

    Hubbell, S. P., Ahumada, J. A., Condit, R. & Foster, R. B. Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecol. Res. 16, 859–875 (2001).

    Article  Google Scholar 

  • 28.

    Stoll, P. & Newbery, D. M. Evidence of species-specific neighborhood effects in the dipterocarpaceae of a bornean rain forest. Ecology 86, 3048–3062 (2005).

    Article  Google Scholar 

  • 29.

    Pillay, T. & Ward, D. Spatial pattern analysis and competition between Acacia karroo trees in humid savannas. Plant Ecol. 213 (2012).

  • 30.

    Fueldner, K., Sattler, S., Zucchini, W. & Gadow, K. V. Modelling person-specific tree selection probabilities in a thinning. Allgemeine Forst Und Jagdzeitung (1996).

  • 31.

    Zenner, E. & Hibbs, D. A new method for modeling the heterogeneity of forest structure. For. Ecol. Manag. 129 (2000).

  • 32.

    Pommerening, A. Approaches to quantifying forest structures. Forestry 75(3), 305–324 (2002).

    Article  Google Scholar 

  • 33.

    Beckschäfer, P. et al. Enhanced structural complexity index: an improved index for describing forest structural complexity. Open J. For. 3, 23–29 (2013).

    Google Scholar 

  • 34.

    Kint, V., van Meirvenne, M., Nachtergale, L., Geudens, G. & Lust, N. Spatial methods for quantifying forest stand structure development: a comparison between nearest-neighbor indices and variogram analysis. For. Sci. 49, 36–49 (2003).

    Google Scholar 

  • 35.

    Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).

    Article  Google Scholar 

  • 36.

    Ripley, B. D. Spatial Statistics (Wiley, New York, 1981).

  • 37.

    Ripley, B. D. Modelling spatial patterns. J. R. Stat. Soc. 39(2), 172–212 (1977).

    MathSciNet  Google Scholar 

  • 38.

    Pommerening, A. & Grabarnik, P. Individual-Based Methods in Forest Ecology and Management (Springer, Berlin, 2019).

  • 39.

    Gadow, K., Albert, M. & Hui, G. Das Winkelmaß – ein Strukturparameter zur beschreibung der Individualverteilung in Waldbeständen. Centralblatt für das gesamte Forstwesen 115(1), 1–10 (1998).

    Google Scholar 

  • 40.

    Aguirre, O., Hui, G., Gadow, K. v. & Jiménez, J. An analysis of spatial forest structure using neighbourhood-based variables. For. Ecol. Manag. 183, 137–145 (2003).

  • 41.

    Hui, G. & Gadow, K. Das Winkelmass – Theoretische Überlegungen zum optimalen Standardwinkel. Allgemeine Forst u. Jagdzeitung 173(9), 173–177 (2002).

    Google Scholar 

  • 42.

    Pommerening, A. Evaluating structural indices by reversing forest structural analysis. For. Ecol. Manage. 224, 266–277 (2006).

    Article  Google Scholar 

  • 43.

    Li, Y., Hui, G., Zhao, Z., Hu, Y. & Adler, P. The bivariate distribution characteristics of spatial structure in natural Korean pine broad-leaved forest. Journal of Vegetation Science 23 (2012).

  • 44.

    Graz, F. P. Spatial diversity of dry savanna woodlands. Assessing the spatial diversity of a dry savanna woodland stand in northern Namibia using neighbourhood-based measures. Biodivers. Conserv. 00, 1–16 (2004).

  • 45.

    Pastorella, F. & Paletto, A. Stand structure indices as tools to support forest management: an application in Trentino forests (Italy). J. For. Sci. 59, 159–168 (2013).

    Article  Google Scholar 

  • 46.

    Zhao, Z. et al. Testing the significance of different tree spatial distribution patterns based on the Uniform Angle Index. Can. J. For. Res. 44(11), 1417–1425 (2014).

    Article  Google Scholar 

  • 47.

    Zhang, G. et al. Composition of basal area in natural forests based on the uniform angle index. Ecol. Inform. 45, 1–8 (2018).

    Article  Google Scholar 

  • 48.

    Stiell, W. How uniformity of tree distribution affects stand growth. For. Chron. 54, 156–158 (1978).

    Article  Google Scholar 

  • 49.

    Jay, A., Nichols, J. & Vanclay, J. Social and ecological issues for private native forestry in north-eastern New South Wales Australia. Small Scale For. 6, 115–126 (2007).

    Article  Google Scholar 

  • 50.

    Zhang, G. et al. Designing near-natural planting patterns for plantation forests in China. For. Ecosyst. 6, 137 (2019).

    Article  Google Scholar 

  • 51.

    Moeur, M. Characterising spatial patterns of trees using stem-mapped data. For. Sci. 39, 756–775 (1993).

    ADS  Google Scholar 

  • 52.

    Stohlgren, T. Spatial patterns of giant sequoia (Sequoiadendrongiganteum) in two sequoia groves in Sequoia National Park California. Can. J. For. Res. 23, 120–132 (2011).

    Article  Google Scholar 

  • 53.

    Pommerening, A. & Grabarnik, P. Individual-based Methods in Forest Ecology and Management (2019).

  • 54.

    Clark, P. & Evans, F. Distance to nearest neighbor as a measure of spatial relations. Ecology 35, 445–453 (1954).

    Article  Google Scholar 

  • 55.

    Assunçáo, R. Testing spatial randomness by means of angle. Biometrics 50, 531–537 (1994).

    MATH  Article  Google Scholar 

  • 56.

    Corral-Rivas JJ. PhD thesis. University of Göttingen (2006).

  • 57.

    Hui, G., Zhang, G., Zhao, Z. & Yang, A. Methods of forest structure research: a review. Curr. For. Rep. 5(3), 142–154. https://doi.org/10.1007/S40725-019-00090-7 (2019).

    Article  Google Scholar 

  • 58.

    Gadow, K., Hui, G. & Albert, M. Das Winkelmaß – Ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Centralblatt für das Gesamte Forstwesen 115, 1–10 (1998).

    Google Scholar 

  • 59.

    Wang, H. et al. The influence of sampling unit size and spatial arrangement patterns on neighborhood-based spatial structure analyses of forest stands. For. Syst. 25, e056 (2016).

    Google Scholar 

  • 60.

    Kraft, G. Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben, Vol. 154 (Klindworth’s Verlag, Hanover, 1884).

  • 61.

    Röhrig, E. & Gussone, H. A. Waldbau auf Ökologischer Grundlage: Zweiter Band (Hamburg, Paul Parey, 1982).

    Google Scholar 

  • 62.

    Hawley, R. C. & Smith, M. D. The practice of silviculture. Ecology 17(1), 172 (1936).

    Article  Google Scholar 

  • 63.

    Larsen, J. B. & Nielsen, A. B. Nature-based forest management—Where are we going?. For. Ecol. Manag. 238, 107–117 (2007).

    Article  Google Scholar 

  • 64.

    Ajani, J. The Forest Wars (Melbourne University, Melbourne, 2007).

    Google Scholar 

  • 65.

    Nichols, J. D., Bristow, M. & Vanclay, J. K. Mixed-species plantations: prospects and challenges. For. Ecol. Manag. 233, 383–390 (2006).

    Article  Google Scholar 

  • 66.

    Carnus, J.-M. et al. Planted forests and biodiversity. J. For. 104, 65–77 (2006).

    Google Scholar 

  • 67.

    Gadow, K. V. & Hui, G. Y. Characterizing forest spatial structure and diversity Institute of Forest Management, Georg-August-University Göttingen, Büsgenweg 5, D-37077 Göttingen, Germany Published in: Sustainable Forestry in Temperate Regions; Proc. of an international workshop organized at the University of Lund, Sweden: 20–30.


  • Source: Ecology - nature.com

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92

    Concept for a hybrid-electric plane may reduce aviation’s air pollution problem