in

A state-space approach to understand responses of organisms, populations and communities to multiple environmental drivers

  • 1.

    Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).

    Article 

    Google Scholar 

  • 2.

    Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2011).

    Article 

    Google Scholar 

  • 3.

    González-Ortegón, E., Blasco, J., Vay, L. L. & Giménez, L. A multiple stressor approach to study the toxicity and sub-lethal effects of pharmaceutical compounds on the larval development of a marine invertebrate. J. Hazard. Mater. 263, 233–238 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Keeling, R. F., Kärtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).

    Article 

    Google Scholar 

  • 6.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Griffen, B., Belgrad, B. A., Cannizzo, Z. J., Knotts, E. R. & Hancock, E. R. Rethinking our approach to multiple stressor studies in marine environments. Mar. Ecol. Prog. Ser. 543, 273–281 (2016).

    Article 

    Google Scholar 

  • 8.

    Gunderson, A., Armstrong, E. & Stillman, J. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).

    Article 

    Google Scholar 

  • 9.

    Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B. 287, 20200421 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Glob. Change Biol. 21, 1887–1906 (2015).

    Article 

    Google Scholar 

  • 11.

    Tekin, E. et al. Using a newly introduced framework to measure ecological stressor interactions. Ecol. Lett. 23, 1391–1403 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B: Biol. Sci. 283, 20152592 (2016).

    Article 

    Google Scholar 

  • 13.

    Breitburg, D. L. et al. In Successes, Limitations, and Frontiers in Ecosystem Science (eds. Pace, M. L. & Groffman, P. M.) Ch. 17 (Springer, 1998).

  • 14.

    Sinclair, B. J., Ferguson, L. V., Salehipour-shirazi, G. & MacMillan, H. A. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53, 545–556 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Vinebrooke, D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–457 (2004).

    Article 

    Google Scholar 

  • 16.

    Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Glob. Change Biol. 24, 2239–2261 (2018).

    Article 

    Google Scholar 

  • 17.

    De Laender, F. Community- and ecosystem-level effects of multiple environmental change drivers: beyond null model testing. Glob. Change Biol. 24, 5021–5030 (2018).

    Article 

    Google Scholar 

  • 18.

    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Meth. Ecol. Evol. 5, 65–73 (2014).

    Article 

    Google Scholar 

  • 19.

    Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).

    Article 

    Google Scholar 

  • 20.

    Dunham, A. E. & Beaupre, S. J. In Experimental Ecology: Issues and Perspectives (eds Resetarits, W. & Bernardo, J.) Ch. 2 (Oxford Univ. Press, 1998).

  • 21.

    Morin, P. J. In Experimental Ecology: Issues and Perspectives (eds Resetarits, W. & Bernardo, J.) Ch. 3 (Oxford Univ. Press, 1998).

  • 22.

    Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).

    Article 

    Google Scholar 

  • 23.

    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Carter, H. A., Ceballos-Osuna, L., Miller, N. A. & Stillman, J. H. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1412–1422 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Appelbaum, S. L., Pan, T. C. F., Hedgecock, D. & Manahan, D. T. Separating the nature and nurture of the allocation of energy in response to global change. Integr. Comp. Biol. 54, 284–295 (2014).

    Article 

    Google Scholar 

  • 26.

    Barner, A. K. et al. Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing. Glob. Change Biol. 24, 4464–4477 (2018).

    Article 

    Google Scholar 

  • 27.

    Spitzner, F., Giménez, L., Meth, R., Harzsch, S. & Torres, G. Unmasking intraspecific variation in offspring responses to multiple environmental drivers. Mar. Biol. 166, 112 (2019).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Torres, G., Thomas, D. N., Whiteley, N. M., Wilcockson, D. & Giménez, L. Maternal and cohort effects modulate offspring responses to multiple stressors. Proc. R. Soc. B 287, 20200492 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Blanquart, F., Kaltz, O., Nuismer, S. L. & Gandon, S. A practical guide to measuring local adaptation. Ecol. Lett. 16, 1195–1205 (2013).

  • 30.

    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Coleman, R. et al. A continental scale evaluation of the role of limpet grazing on rocky shores. Oecologia 147, 556–564 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Hewitt, J. E., Thrush, S. F., Dayton, P. K. & Bonsdorff, E. The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale‐dependent systems. Am. Nat. 169, 398–408 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).

    Article 

    Google Scholar 

  • 34.

    Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).

    Article 

    Google Scholar 

  • 35.

    Benedetti-Cecchi, L. Variance in ecological consumer-resource interactions. Nature 407, 370–374 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Schäfer, R. B. & Piggott, J. J. Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob. Change Biol. 24, 1817–1826 (2018).

    Article 

    Google Scholar 

  • 37.

    Hastie, T, Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2009).

  • 38.

    Garfinkel, A., Shevtsov, J. & Guo, Y. Modelling Life (Springer, 2017).

  • 39.

    Durrant, H. M. S., Clark, G. F., Dworjanyn, S. A., Byrne, M. & Johnston, E. L. Seasonal variation in the effects of ocean warming and acidification on a native bryozoan, Celleporaria nodulosa. Mar. Biol. 160, 1903–1911 (2013).

    Article 

    Google Scholar 

  • 40.

    Jensen, G. C., McDonald, P. S. & David, A. A. East meets west: competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Prog. Ser. 225, 251–262 (2002).

    Article 

    Google Scholar 

  • 41.

    Jungblut, S., Beermann, J., Boos, K., Saborowski, R. & Hagen, W. Population development of the invasive crab Hemigrapsus sanguineus (De Haan, 1853) and its potential native competitor Carcinus maenas (Linnaeus, 1758) at Helgoland (North Sea) between 2009 and 2014. Aquat. Inv. 12, 85–96 (2017).

    Article 

    Google Scholar 

  • 42.

    Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398 (2010).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).

    Article 

    Google Scholar 

  • 44.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Progr. Oceanogr. 141, 227–238 (2016).

    Article 

    Google Scholar 

  • 45.

    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article 

    Google Scholar 

  • 47.

    Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: could deep temperate reefs act as a refuge? Proc. R. Soc. B 287, 20200709 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Pandori, L. L. M. & Sorte, C. J. B. The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos 128, 621–629 (2019).

    Article 

    Google Scholar 

  • 49.

    Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).

    Article 

    Google Scholar 

  • 50.

    Gouvêa, L. P. et al. Interactive effects of marine heatwaves and eutrophication on the ecophysiology of a widespread and ecologically important macroalga. Limnol. Oceanogr. 62, 2056–2075 (2017).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Hayashida, H., Matear, R. J. & Strutton, P. G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Change Biol. 26, 4800–4811 (2020).

    Article 

    Google Scholar 

  • 52.

    Von Biela, V. R. et al. Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014-2016. Mar. Ecol. Prog. Ser. 613, 171–182 (2019).

    Article 

    Google Scholar 

  • 53.

    Dawirs, R. R., Püschel, C. & Schorn, F. Temperature and growth in Carcinus maenas L. (Decapoda: Portunidae) larvae reared in the laboratory from hatching through metamorphosis. J. Exp. Mar. Biol. Ecol. 100, 47–74 (1986).

    Article 

    Google Scholar 

  • 54.

    Torres, G. & Giménez, L. Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. Funct. Ecol. 34, 1564–1576 (2020).

    Article 

    Google Scholar 

  • 55.

    Roman, J. O. E. & Palumbi, S. R. A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol. Ecol. 13, 2891–2898 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Zeng, C., Rotllant, G., Gimenez, L. & Romano, N. In The Natural History of Crustacea: Developmental Biology and Larval Ecology (eds Anger, K., Harzsch, S. & Thiel, M.) Vol. 7, Ch. 7 (Oxford Univ. Press, 2020).

  • 57.

    Nougué, O., Svendsen, N., Jabbour-Zahab, R., Lenormand, T. & Chevin, L.-M. The ontogeny of tolerance curves: habitat quality vs. acclimation in a stressful environment. J. Anim. Ecol. 85, 1625–1635 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Enriquez-Urzelai, U. et al. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria. Oecologia 189, 385–394 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Epifanio, C. E., Dittel, A. I., Park, S., Schwalm, S. & Fouts, A. Early life history of Hemigrapsus sanguineus, a non-indigenous crab in the Middle Atlantic Bight (USA). Mar. Ecol. Prog. Ser. 170, 231–238 (1998).

    Article 

    Google Scholar 

  • 61.

    Karlsson, R., Obst, M. & Berggren, M. Analysis of potential distribution and impacts for two species of alien crabs in Northern Europe. Biol. Inv. 21, 3109–3119 (2019).

    Article 

    Google Scholar 

  • 62.

    Sulkin, S., Blanco, A., Chan, J. & Bryant, M. Effects of limiting access to prey on development of first zoeal stage of the brachyuran crabs Cancer magister and Hemigrapsus oregonensis. Mar. Biol. 131, 515–521 (1998).

    Article 

    Google Scholar 

  • 63.

    Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92, 3–10 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 64.

    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    Article 

    Google Scholar 

  • 65.

    Zuur, A., Ieno, E. N., Walker, N., Savaliev, A. A. & Smith, G. M. Mixed Effect Models and Extensions in Ecology with R (Springer, 2009).

  • 66.

    R core team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2017).

  • 67.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-137. (2018).

  • 68.

    Giménez, L. & Torres, G. Effect of simulated heatwaves on larval performance of two marine invertebrates. PANGAEA https://doi.org/10.1594/PANGAEA.934715 (2021).


  • Source: Ecology - nature.com

    The language of change

    Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya