Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).
Google Scholar
Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2011).
Google Scholar
González-Ortegón, E., Blasco, J., Vay, L. L. & Giménez, L. A multiple stressor approach to study the toxicity and sub-lethal effects of pharmaceutical compounds on the larval development of a marine invertebrate. J. Hazard. Mater. 263, 233–238 (2013).
Google Scholar
Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr. Comp. Biol. 53, 582–596 (2013).
Google Scholar
Keeling, R. F., Kärtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).
Google Scholar
Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
Google Scholar
Griffen, B., Belgrad, B. A., Cannizzo, Z. J., Knotts, E. R. & Hancock, E. R. Rethinking our approach to multiple stressor studies in marine environments. Mar. Ecol. Prog. Ser. 543, 273–281 (2016).
Google Scholar
Gunderson, A., Armstrong, E. & Stillman, J. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).
Google Scholar
Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B. 287, 20200421 (2020).
Google Scholar
Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Glob. Change Biol. 21, 1887–1906 (2015).
Google Scholar
Tekin, E. et al. Using a newly introduced framework to measure ecological stressor interactions. Ecol. Lett. 23, 1391–1403 (2020).
Google Scholar
Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B: Biol. Sci. 283, 20152592 (2016).
Google Scholar
Breitburg, D. L. et al. In Successes, Limitations, and Frontiers in Ecosystem Science (eds. Pace, M. L. & Groffman, P. M.) Ch. 17 (Springer, 1998).
Sinclair, B. J., Ferguson, L. V., Salehipour-shirazi, G. & MacMillan, H. A. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 53, 545–556 (2013).
Google Scholar
Vinebrooke, D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–457 (2004).
Google Scholar
Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Glob. Change Biol. 24, 2239–2261 (2018).
Google Scholar
De Laender, F. Community- and ecosystem-level effects of multiple environmental change drivers: beyond null model testing. Glob. Change Biol. 24, 5021–5030 (2018).
Google Scholar
Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Meth. Ecol. Evol. 5, 65–73 (2014).
Google Scholar
Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).
Google Scholar
Dunham, A. E. & Beaupre, S. J. In Experimental Ecology: Issues and Perspectives (eds Resetarits, W. & Bernardo, J.) Ch. 2 (Oxford Univ. Press, 1998).
Morin, P. J. In Experimental Ecology: Issues and Perspectives (eds Resetarits, W. & Bernardo, J.) Ch. 3 (Oxford Univ. Press, 1998).
Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).
Google Scholar
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).
Google Scholar
Carter, H. A., Ceballos-Osuna, L., Miller, N. A. & Stillman, J. H. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J. Exp. Biol. 216, 1412–1422 (2013).
Google Scholar
Appelbaum, S. L., Pan, T. C. F., Hedgecock, D. & Manahan, D. T. Separating the nature and nurture of the allocation of energy in response to global change. Integr. Comp. Biol. 54, 284–295 (2014).
Google Scholar
Barner, A. K. et al. Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing. Glob. Change Biol. 24, 4464–4477 (2018).
Google Scholar
Spitzner, F., Giménez, L., Meth, R., Harzsch, S. & Torres, G. Unmasking intraspecific variation in offspring responses to multiple environmental drivers. Mar. Biol. 166, 112 (2019).
Google Scholar
Torres, G., Thomas, D. N., Whiteley, N. M., Wilcockson, D. & Giménez, L. Maternal and cohort effects modulate offspring responses to multiple stressors. Proc. R. Soc. B 287, 20200492 (2020).
Google Scholar
Blanquart, F., Kaltz, O., Nuismer, S. L. & Gandon, S. A practical guide to measuring local adaptation. Ecol. Lett. 16, 1195–1205 (2013).
Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).
Google Scholar
Coleman, R. et al. A continental scale evaluation of the role of limpet grazing on rocky shores. Oecologia 147, 556–564 (2006).
Google Scholar
Hewitt, J. E., Thrush, S. F., Dayton, P. K. & Bonsdorff, E. The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale‐dependent systems. Am. Nat. 169, 398–408 (2007).
Google Scholar
Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).
Google Scholar
Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).
Google Scholar
Benedetti-Cecchi, L. Variance in ecological consumer-resource interactions. Nature 407, 370–374 (2000).
Google Scholar
Schäfer, R. B. & Piggott, J. J. Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob. Change Biol. 24, 1817–1826 (2018).
Google Scholar
Hastie, T, Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2009).
Garfinkel, A., Shevtsov, J. & Guo, Y. Modelling Life (Springer, 2017).
Durrant, H. M. S., Clark, G. F., Dworjanyn, S. A., Byrne, M. & Johnston, E. L. Seasonal variation in the effects of ocean warming and acidification on a native bryozoan, Celleporaria nodulosa. Mar. Biol. 160, 1903–1911 (2013).
Google Scholar
Jensen, G. C., McDonald, P. S. & David, A. A. East meets west: competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Prog. Ser. 225, 251–262 (2002).
Google Scholar
Jungblut, S., Beermann, J., Boos, K., Saborowski, R. & Hagen, W. Population development of the invasive crab Hemigrapsus sanguineus (De Haan, 1853) and its potential native competitor Carcinus maenas (Linnaeus, 1758) at Helgoland (North Sea) between 2009 and 2014. Aquat. Inv. 12, 85–96 (2017).
Google Scholar
Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398 (2010).
Google Scholar
Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).
Google Scholar
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Progr. Oceanogr. 141, 227–238 (2016).
Google Scholar
Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).
Google Scholar
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Google Scholar
Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: could deep temperate reefs act as a refuge? Proc. R. Soc. B 287, 20200709 (2020).
Google Scholar
Pandori, L. L. M. & Sorte, C. J. B. The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos 128, 621–629 (2019).
Google Scholar
Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).
Google Scholar
Gouvêa, L. P. et al. Interactive effects of marine heatwaves and eutrophication on the ecophysiology of a widespread and ecologically important macroalga. Limnol. Oceanogr. 62, 2056–2075 (2017).
Google Scholar
Hayashida, H., Matear, R. J. & Strutton, P. G. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Glob. Change Biol. 26, 4800–4811 (2020).
Google Scholar
Von Biela, V. R. et al. Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014-2016. Mar. Ecol. Prog. Ser. 613, 171–182 (2019).
Google Scholar
Dawirs, R. R., Püschel, C. & Schorn, F. Temperature and growth in Carcinus maenas L. (Decapoda: Portunidae) larvae reared in the laboratory from hatching through metamorphosis. J. Exp. Mar. Biol. Ecol. 100, 47–74 (1986).
Google Scholar
Torres, G. & Giménez, L. Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. Funct. Ecol. 34, 1564–1576 (2020).
Google Scholar
Roman, J. O. E. & Palumbi, S. R. A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol. Ecol. 13, 2891–2898 (2004).
Google Scholar
Zeng, C., Rotllant, G., Gimenez, L. & Romano, N. In The Natural History of Crustacea: Developmental Biology and Larval Ecology (eds Anger, K., Harzsch, S. & Thiel, M.) Vol. 7, Ch. 7 (Oxford Univ. Press, 2020).
Nougué, O., Svendsen, N., Jabbour-Zahab, R., Lenormand, T. & Chevin, L.-M. The ontogeny of tolerance curves: habitat quality vs. acclimation in a stressful environment. J. Anim. Ecol. 85, 1625–1635 (2016).
Google Scholar
Seuront, L., Nicastro, K. R., Zardi, G. I. & Goberville, E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci. Rep. 9, 17498 (2019).
Google Scholar
Enriquez-Urzelai, U. et al. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria. Oecologia 189, 385–394 (2019).
Google Scholar
Epifanio, C. E., Dittel, A. I., Park, S., Schwalm, S. & Fouts, A. Early life history of Hemigrapsus sanguineus, a non-indigenous crab in the Middle Atlantic Bight (USA). Mar. Ecol. Prog. Ser. 170, 231–238 (1998).
Google Scholar
Karlsson, R., Obst, M. & Berggren, M. Analysis of potential distribution and impacts for two species of alien crabs in Northern Europe. Biol. Inv. 21, 3109–3119 (2019).
Google Scholar
Sulkin, S., Blanco, A., Chan, J. & Bryant, M. Effects of limiting access to prey on development of first zoeal stage of the brachyuran crabs Cancer magister and Hemigrapsus oregonensis. Mar. Biol. 131, 515–521 (1998).
Google Scholar
Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92, 3–10 (2011).
Google Scholar
Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
Google Scholar
Zuur, A., Ieno, E. N., Walker, N., Savaliev, A. A. & Smith, G. M. Mixed Effect Models and Extensions in Ecology with R (Springer, 2009).
R core team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2017).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-137. (2018).
Giménez, L. & Torres, G. Effect of simulated heatwaves on larval performance of two marine invertebrates. PANGAEA https://doi.org/10.1594/PANGAEA.934715 (2021).
Source: Ecology - nature.com