Norton, L. & Simon, R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61, 1307–1317 (1977).
Google Scholar
Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1733 (1979).
Google Scholar
Gatenby, R. A. A change of strategy in the war on cancer. Nature 459, 508–509 (2009).
Google Scholar
Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).
Google Scholar
Martin, R. B., Fisher, M. E., Minchin, R. F. & Teo, K. L. Optimal control of tumor size used to maximize survival time when cells are resistant to chemotherapy. Math. Biosci. 110, 201–219 (1992).
Google Scholar
Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).
Google Scholar
Gatenby, R. & Brown, J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med. 10, a040972 (2020).
Google Scholar
Bourguet, D. et al. Heterogeneity of selection and the evolution of resistance. Trends Ecol. Evol. 28, 110–118 (2013).
Google Scholar
Tabashnik, B. E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521 (2013).
Google Scholar
Cunningham, J. J. A call for integrated metastatic management. Nat. Ecol. Evol. 3, 996–998 (2019).
Google Scholar
Bacevic, K. Spatial competition constrains resistance to targeted cancer therapy. Nat. Commun. 8, 1995 (2017).
Google Scholar
Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).
Google Scholar
Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8, 327ra24 (2016).
Google Scholar
Monro, H. C. & Gaffney, E. A. Modelling chemotherapy resistance in palliation and failed cure. J. Theor. Biol. 257, 292–302 (2009).
Google Scholar
Carrère, C. Optimization of an in vitro chemotherapy to avoid resistant tumours. J. Theor. Biol. 413, 24–33 (2017).
Google Scholar
Gallaher, J. A., Enriquez-Navas, P. M., Luddy, K. A., Gatenby, R. A. & Anderson, A. R. A. Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. Cancer Res. 78, 2127–2139 (2018).
Google Scholar
Hansen, E., Woods, R. J. & Read, A. F. How to use a chemotherapeutic agent when resistance to it threatens the patient. PLoS Biol. 15, e2001110 (2017).
Google Scholar
Cunningham, J. J., Brown, J. S., Gatenby, R. A. & Staňková, K. Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer. J. Theor. Biol. 459, 67–78 (2018).
Google Scholar
West, J., Ma, Y. & Newton, P. K. Capitalizing on competition: an evolutionary model of competitive release in metastatic castration resistant prostate cancer treatment. J. Theor. Biol. 455, 249–260 (2018).
Google Scholar
Pouchol, C., Clairambault, J., Lorz, A. & Trélat, E. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J. Math. Pures Appl. 116, 268–308 (2018).
Google Scholar
Carrère, C. & Zidani, H. Stability and reachability analysis for a controlled heterogeneous population of cells. Optim. Control Appl. Methods 41, 1678–1704 (2020).
Google Scholar
Greene, J. M., Sanchez-Tapia, C. & Sontag, E. D. Mathematical details on a cancer resistance model. Front. Bioeng. Biotechnol. 8, 501 (2020).
Google Scholar
Martin, R. B., Fisher, M. E., Minchin, R. F. & Teo, K. L. Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells. Math. Biosci. 110, 221–252 (1992).
Google Scholar
Gerlee, P. The model muddle: in search of tumor growth laws. Cancer Res. 73, 2407–2411 (2013).
Google Scholar
Noble, R., Burri, D., Kather, J. N. & Beerenwinkel, N. Spatial structure governs the mode of tumour evolution. Preprint at bioRxiv https://doi.org/10.1101/586735 (2019).
Hansen, E. & Read, A. F. Cancer therapy: attempt cure or manage drug resistance? Evol. Appl. 13, 1660–1672 (2020).
Google Scholar
Enriquez-Navas, P. M., Wojtkowiak, J. W. & Gatenby, R. A. Application of evolutionary principles to cancer therapy. Cancer Res. 75, 4675–4680 (2015).
Google Scholar
Gatenby, R. A. & Brown, J. S. Integrating evolutionary dynamics into cancer therapy. Nat. Rev. Clin. Oncol. 17, 675–686 (2020).
Google Scholar
Strobl, M. A. R. et al. Turnover modulates the need for a cost of resistance in adaptive therapy. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-20-0806 (2020).
Google Scholar
Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013).
Google Scholar
Pérez-García, V. M. et al. Universal scaling laws rule explosive growth in human cancers. Nat. Phys. 16, 1232–1237 (2020).
Google Scholar
Greene, J. M., Gevertz, J. L. & Sontag, E. S. Mathematical approach to differentiate spontaneous and induced evolution to drug resistance during cancer treatment. JCO Clin. Cancer Inform. 3, CCI.18.00087 (2019).
Google Scholar
Kuosmanen, T. et al. Drug-induced resistance evolution necessitates less aggressive treatment. Preprint at bioRxiv https://doi.org/10.1101/2020.10.07.330134 (2020).
Fusco, D., Gralka, M., Kayser, J., Anderson, A. & Hallatschek, O. Excess of mutational jackpot events in expanding populations revealed by spatial Luria–Delbrück experiments. Nat. Commun. 7, 12760 (2016).
Google Scholar
Mistry, H. B. Evolutionary based adaptive dosing algorithms: beware the cost of cumulative risk. Preprint at bioRxiv https://doi.org/10.1101/2020.06.23.167056 (2020).
Benzekry, S. et al. Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput. Biol. 10, e1003800 (2014).
Google Scholar
Vaghi, C. et al. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput. Biol. 16, e1007178 (2020).
Google Scholar
Hansen, E., Karslake, J., Woods, R. J., Read, A. F. & Wood, K. B. Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations. PLoS Biol. 18, e3000713 (2020).
Google Scholar
Soetaert, K. E. R., Petzoldt, T. & Setzer, R. W. Solving differential equations in R : package deSolve. J. Stat. Softw. 33, 9 (2010).
Source: Ecology - nature.com