in

A theoretical analysis of tumour containment

  • 1.

    Norton, L. & Simon, R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61, 1307–1317 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1733 (1979).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Gatenby, R. A. A change of strategy in the war on cancer. Nature 459, 508–509 (2009).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).

    Article 

    Google Scholar 

  • 5.

    Martin, R. B., Fisher, M. E., Minchin, R. F. & Teo, K. L. Optimal control of tumor size used to maximize survival time when cells are resistant to chemotherapy. Math. Biosci. 110, 201–219 (1992).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Gatenby, R. & Brown, J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med. 10, a040972 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Bourguet, D. et al. Heterogeneity of selection and the evolution of resistance. Trends Ecol. Evol. 28, 110–118 (2013).

    Article 

    Google Scholar 

  • 9.

    Tabashnik, B. E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521 (2013).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Cunningham, J. J. A call for integrated metastatic management. Nat. Ecol. Evol. 3, 996–998 (2019).

    Article 

    Google Scholar 

  • 11.

    Bacevic, K. Spatial competition constrains resistance to targeted cancer therapy. Nat. Commun. 8, 1995 (2017).

    Article 

    Google Scholar 

  • 12.

    Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8, 327ra24 (2016).

    Article 

    Google Scholar 

  • 14.

    Monro, H. C. & Gaffney, E. A. Modelling chemotherapy resistance in palliation and failed cure. J. Theor. Biol. 257, 292–302 (2009).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Carrère, C. Optimization of an in vitro chemotherapy to avoid resistant tumours. J. Theor. Biol. 413, 24–33 (2017).

    Article 

    Google Scholar 

  • 16.

    Gallaher, J. A., Enriquez-Navas, P. M., Luddy, K. A., Gatenby, R. A. & Anderson, A. R. A. Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. Cancer Res. 78, 2127–2139 (2018).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Hansen, E., Woods, R. J. & Read, A. F. How to use a chemotherapeutic agent when resistance to it threatens the patient. PLoS Biol. 15, e2001110 (2017).

    Article 

    Google Scholar 

  • 18.

    Cunningham, J. J., Brown, J. S., Gatenby, R. A. & Staňková, K. Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer. J. Theor. Biol. 459, 67–78 (2018).

    CAS 
    Article 

    Google Scholar 

  • 19.

    West, J., Ma, Y. & Newton, P. K. Capitalizing on competition: an evolutionary model of competitive release in metastatic castration resistant prostate cancer treatment. J. Theor. Biol. 455, 249–260 (2018).

    Article 

    Google Scholar 

  • 20.

    Pouchol, C., Clairambault, J., Lorz, A. & Trélat, E. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J. Math. Pures Appl. 116, 268–308 (2018).

    Article 

    Google Scholar 

  • 21.

    Carrère, C. & Zidani, H. Stability and reachability analysis for a controlled heterogeneous population of cells. Optim. Control Appl. Methods 41, 1678–1704 (2020).

    Article 

    Google Scholar 

  • 22.

    Greene, J. M., Sanchez-Tapia, C. & Sontag, E. D. Mathematical details on a cancer resistance model. Front. Bioeng. Biotechnol. 8, 501 (2020).

    Article 

    Google Scholar 

  • 23.

    Martin, R. B., Fisher, M. E., Minchin, R. F. & Teo, K. L. Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells. Math. Biosci. 110, 221–252 (1992).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Gerlee, P. The model muddle: in search of tumor growth laws. Cancer Res. 73, 2407–2411 (2013).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Noble, R., Burri, D., Kather, J. N. & Beerenwinkel, N. Spatial structure governs the mode of tumour evolution. Preprint at bioRxiv https://doi.org/10.1101/586735 (2019).

  • 26.

    Hansen, E. & Read, A. F. Cancer therapy: attempt cure or manage drug resistance? Evol. Appl. 13, 1660–1672 (2020).

    Article 

    Google Scholar 

  • 27.

    Enriquez-Navas, P. M., Wojtkowiak, J. W. & Gatenby, R. A. Application of evolutionary principles to cancer therapy. Cancer Res. 75, 4675–4680 (2015).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Gatenby, R. A. & Brown, J. S. Integrating evolutionary dynamics into cancer therapy. Nat. Rev. Clin. Oncol. 17, 675–686 (2020).

    Article 

    Google Scholar 

  • 29.

    Strobl, M. A. R. et al. Turnover modulates the need for a cost of resistance in adaptive therapy. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-20-0806 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013).

    Article 

    Google Scholar 

  • 31.

    Pérez-García, V. M. et al. Universal scaling laws rule explosive growth in human cancers. Nat. Phys. 16, 1232–1237 (2020).

    Article 

    Google Scholar 

  • 32.

    Greene, J. M., Gevertz, J. L. & Sontag, E. S. Mathematical approach to differentiate spontaneous and induced evolution to drug resistance during cancer treatment. JCO Clin. Cancer Inform. 3, CCI.18.00087 (2019).

    PubMed Central 

    Google Scholar 

  • 33.

    Kuosmanen, T. et al. Drug-induced resistance evolution necessitates less aggressive treatment. Preprint at bioRxiv https://doi.org/10.1101/2020.10.07.330134 (2020).

  • 34.

    Fusco, D., Gralka, M., Kayser, J., Anderson, A. & Hallatschek, O. Excess of mutational jackpot events in expanding populations revealed by spatial Luria–Delbrück experiments. Nat. Commun. 7, 12760 (2016).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Mistry, H. B. Evolutionary based adaptive dosing algorithms: beware the cost of cumulative risk. Preprint at bioRxiv https://doi.org/10.1101/2020.06.23.167056 (2020).

  • 36.

    Benzekry, S. et al. Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput. Biol. 10, e1003800 (2014).

    Article 

    Google Scholar 

  • 37.

    Vaghi, C. et al. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput. Biol. 16, e1007178 (2020).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Hansen, E., Karslake, J., Woods, R. J., Read, A. F. & Wood, K. B. Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations. PLoS Biol. 18, e3000713 (2020).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Soetaert, K. E. R., Petzoldt, T. & Setzer, R. W. Solving differential equations in R : package deSolve. J. Stat. Softw. 33, 9 (2010).


  • Source: Ecology - nature.com

    Mature Andean forests as globally important carbon sinks and future carbon refuges

    Negative emissions, positive economy