in

Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands

[adace-ad id="91168"]
  • 1.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article 

    Google Scholar 

  • 3.

    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Bessler, H. et al. Nitrogen uptake by grassland communities: contribution of N2 fixation, facilitation, complementarity, and species dominance. Plant Soil 358, 301–322 (2012).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Karanika, E. D., Alifragis, D. A., Mamolos, A. P. & Veresoglou, D. S. Differentiation between responses of primary productivity and phosphorus exploitation to species richness. Plant Soil 297, 69–81 (2007).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Lange, M. et al. How plant diversity impacts the coupled water, nutrient and carbon cycles. Adv. Ecol. Res. 61, 185–219 (2019).

    Article 

    Google Scholar 

  • 8.

    Oelmann, Y. et al. Does plant diversity influence phosphorus cycling in experimental grasslands? Geoderma 167-68, 178–187 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Leimer, S., Oelmann, Y., Wirth, C. & Wilcke, W. Time matters for plant diversity effects on nitrate leaching from temperate grassland. Agric Ecosyst. Environ. 211, 155–163 (2015).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Scherer-Lorenzen, M., Palmborg, C., Prinz, A. & Schulze, E.-D. The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84, 1539–1552 (2003).

    Article 

    Google Scholar 

  • 12.

    Elser, J. & Bennett, E. A broken biogeochemical cycle. Nature 478, 29–31 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Lambers, H., Mougel, C., Jaillard, B. & Hinsinger, P. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321, 83–115 (2009).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Wassen, M. J., Olde Venterink, H., Lapshina, E. D. & Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 437, 547–550 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change-Hum. Policy Dimens. 19, 292–305 (2009).

    Article 

    Google Scholar 

  • 16.

    van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Article 
    CAS 

    Google Scholar 

  • 17.

    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability. Plant Physiol. 156, 989–996 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Hacker, N. et al. Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in soil. Ecol. Lett. 18, 1356–1365 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Hacker, N., Wilcke, W. & Oelmann, Y. The oxygen isotope composition of bioavailable phosphate in soil reflects the oxygen isotope composition in soil water driven by plant diversity effects on evaporation. Geochim. Cosmochim. Acta 248, 387–399 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Craven, D. et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos. Trans. R. Soc. B 371, 8 (2016).

    Article 

    Google Scholar 

  • 22.

    Fridley, J. D. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132, 271–277 (2002).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Weigelt, A., Weisser, W. W., Buchmann, N. & Scherer-Lorenzen, M. Biodiversity for multifunctional grasslands: equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences 6, 1695–1706 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Nyfeler, D. et al. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl Ecol. 46, 683–691 (2009).

    Article 

    Google Scholar 

  • 25.

    Oelmann, Y., Vogel, A., Wegener, F., Weigelt, A. & Scherer-Lorenzen, M. Management intensity modifies plant diversity effects on N yield and mineral N in soil. Soil Sci. Soc. Am. J. 79, 559–568 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Manning P., et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. In: Mechanisms Underlying the Relationship between Biodiversity and Ecosystem Function (ed^(eds Eisenhauer N., Bohan D. A., Dumbrell A. J.). Academic Press Ltd-Elsevier Science Ltd (2019).

  • 27.

    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Article 

    Google Scholar 

  • 28.

    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Collins, C. D. & Foster, B. L. Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology 90, 2567–2576 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Klironomos, J. N., McCune, J., Hart, M. & Neville, J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol. Lett. 3, 137–141 (2000).

    Article 

    Google Scholar 

  • 31.

    Busch, V. et al. Will I stay or will I go? Plant species-specific response and tolerance to high land-use intensity in temperate grassland ecosystems. J. Veg. Sci. 30, 674–686 (2019).

    Article 

    Google Scholar 

  • 32.

    Sorkau, E. et al. The role of soil chemical properties, land use and plant diversity for microbial phosphorus in forest and grassland soils. J. Plant Nutr. Soil Sci. 181, 185–197 (2018).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Wardle, D. A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. Camb. Philos. Soc. 67, 321–358 (1992).

    Article 

    Google Scholar 

  • 34.

    Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Cleveland, C. C. & Liptzin, D. C. N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252 (2007).

    Article 

    Google Scholar 

  • 37.

    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Marquard, E. et al. Plant species richness and functional composition drive overyielding in a 6-year grassland experiment. Ecology 90, 3290–3302 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Liebisch, F. et al. Seasonal dynamics and turnover of microbial phosphorus in a permanent grassland. Biol. Fertil. Soils 50, 465–475 (2014).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Boeddinghaus, R. S. et al. Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. J. Ecol. 107, 2197–2210 (2019).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Soussana, J. F. et al. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 20, 219–230 (2004).

    Article 

    Google Scholar 

  • 42.

    Waldrop, M. P., Zak, D. R., Blackwood, C. B., Curtis, C. D. & Tilman, D. Resource availability controls fungal diversity across a plant diversity gradient. Ecol. Lett. 9, 1127–1135 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Kour, D. et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31, 43–75 (2021).

    Article 

    Google Scholar 

  • 44.

    Dijkstra, F. A., He, M. Z., Johansen, M. P., Harrison, J. J. & Keitel, C. Plant and microbial uptake of nitrogen and phosphorus affected by drought using N-15 and P-32 tracers. Soil Biol. Biochem. 82, 135–142 (2015).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Hiiesalu, I. et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. N. Phytol. 203, 233–244 (2014).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Bas Appl. Ecol. 5, 107–121 (2004).

    Article 

    Google Scholar 

  • 48.

    Hoffmann K., Bivour W., Früh B., Koßmann M., Voß P.-H. Climate studies in Jena for adaption to climate change and ist expected consequences. (In German). Selbstverlag des Deutschen Wetterdienstes (2014).

  • 49.

    IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. FAO (2015).

  • 50.

    Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Bas Appl Ecol. 11, 473–485 (2010).

    Article 

    Google Scholar 

  • 51.

    Alt, F., Oelmann, Y., Herold, N., Schrumpf, M. & Wilcke, W. Phosphorus partitioning in grassland and forest soils of Germany as related to land-use type, management intensity, and land use-related pH. J. Plant Nutr. Soil Sci. 174, 195–209 (2011).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodiver Data J. 7, 38 (2019).

    Article 

    Google Scholar 

  • 53.

    Alt, F., Oelmann, Y., Schöning, I. & Wilcke, W. Phosphate release kinetics at stable pH in calcareous grassland and forest soils. Soil Sci. Soc. Am. J. 77, 2060–2070 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 54.

    Jones J. B., Wolf B., Mills H. A. Plant analysis handbook. Micro Macro Publishing (1991).

  • 55.

    Marina, M. A. & Lopez, M. C. B. Determination of phosphorus in raw materials for ceramics: comparison between X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry. Anal. Chim. Acta 432, 157–163 (2001).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Hedley, M. J., Stewart, J. W. B. & Chauhan, B. S. Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46, 970–976 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 57.

    Kuo S. Phosphorus. In: Methods of Soil Analysis – Part 3 Chemical Methods (eds Sparks D. L., et al.). SSSA (1996).

  • 58.

    Cross, A. F. & Schlesinger, W. H. A literature review and evaluation of the Hedley fractionation – applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64, 197–214 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 59.

    Negassa, W. & Leinweber, P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J. Plant Nutr. Soil Sci. 172, 305–325 (2009).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Murphy, J. & Riley, J. P. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta 26, 31–36 (1962).

    Article 

    Google Scholar 

  • 61.

    McLaughlin, M. J., Alston, A. M. & Martin, J. K. Measurement of phosphorus in the soil microbial biomass – a modified procedure for field soils. Soil Biol. Biochem. 18, 437–443 (1986).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Kouno, K., Tuchiya, Y. & Ando, T. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biol. Biochem. 27, 1353–1357 (1995).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Bünemann, E. K., Marschner, P., Smernik, R. J., Conyers, M. & McNeill, A. M. Soil organic phosphorus and microbial community composition as affected by 26 years of different management strategies. Biol. Fertil. Soils 44, 717–726 (2008).

    Article 

    Google Scholar 

  • 64.

    Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem 14, 319–329 (1982).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Eivazi, F. & Tabatabai, M. A. Phosphatases in soils. Soil Biol. Biochem. 9, 167–172 (1977).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Marx, M. C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Berner, D. et al. Land-use intensity modifies spatial distribution and function of soil microorganisms in grasslands. Pedobiologia 54, 341–351 (2011).

    ADS 
    Article 

    Google Scholar 

  • 68.

    White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40, 51–62 (1979).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Kramer, C. & Gleixner, G. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol. Biochem. 38, 3267–3278 (2006).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Frostegard, A. & Baath, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65 (1996).

    Article 

    Google Scholar 

  • 72.

    Zelles, L. Identification of single cultured micro-organisms based on their whole-community fatty acid profiles, using an extended extraction procedure. Chemosphere 39, 665–682 (1999).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Dassen, S. et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol. Ecol. 26, 4085–4098 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Kuramae, E. E. et al. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing. PLoS ONE 8, 8 (2013).

    Article 
    CAS 

    Google Scholar 

  • 75.

    Wubet, T., Weiss, M., Kottke, I. & Oberwinkler, F. Two threatened coexisting indigenous conifer species in the dry Afromontane forests of Ethiopia are associated with distinct arbuscular mycorrhizal fungal communities. Can. J. Bot.-Rev. Canadienne De. Botanique 84, 1617–1627 (2006).

    CAS 

    Google Scholar 

  • 76.

    Lee, J., Lee, S. & Young, J. P. W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 65, 339–349 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Simon, L., Lalonde, M. & Bruns, T. D. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58, 291–295 (1992).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Lefcheck, J. S. PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • 79.

    van der Heijden, M. G. A. et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. N. Phytol. 172, 739–752 (2006).

    Article 

    Google Scholar 

  • 80.

    Frew, A. Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C-3 and C-4 crop plants. Soil Biol. Biochem. 135, 248–250 (2019).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Hedlund, K. et al. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos 103, 45–58 (2003).

    Article 

    Google Scholar 

  • 82.

    Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Köhl, L., Oehl, F. & van der Heijden, M. G. A. Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol. Appl. 24, 1842–1853 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 84.

    Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322 (2008).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Steinbeiss, S. et al. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob. Change Biol. 14, 2937–2949 (2008).

    ADS 
    Article 

    Google Scholar 

  • 86.

    Hacker N. Phosphorus Release Mechanisms in an Experimental Grassland of Varying Biodiversity. Doctoral thesis, University of Tübingen, Germany (2017).


  • Source: Ecology - nature.com

    Manipulating magnets in the quest for fusion

    Reducing emissions by decarbonizing industry