Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996).
Google Scholar
Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).
Google Scholar
Coleman, D. C., Andrews, R., Ellis, J. E. & Singh, J. S. Energy flow and partitioning in selected man-managed and natural ecosystems. Agro-Ecosyst. 3, 45–54 (1976).
Google Scholar
Steffan, S. A. et al. Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory. Ecol. Evol. 7, 3532–3541 (2017).
Google Scholar
Coleman, D. C. Energetics of detritivory and microbivory in soil in theory and practice. In Food Webs (eds. Polis G. A. & Winemiller K. O.) 39–50 (Springer, 1996).
Google Scholar
Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).
Google Scholar
Hagen, E. M. et al. A meta-analysis of the effects of detritus on primary producers and consumers in marine, freshwater, and terrestrial ecosystems. Oikos 121, 1507–1515 (2012).
Google Scholar
Danovaro, R., Snelgrove, P. V. R. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).
Google Scholar
Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).
Google Scholar
Gage, J. D. & Tyler, P. A. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor. (Cambridge University Press, 1991).
Google Scholar
De La Rocha, C. L. & Passow, U. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Res. Part II Top. Stud. Oceanogr. 54, 639–658 (2007).
Google Scholar
Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M. & Kahru, M. Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc. Natl. Acad. Sci. USA. 115, 12235–12240 (2018).
Google Scholar
Ramirez-Llodra, E. et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).
Google Scholar
Ruhl, H. A. Abundance and size distribution dynamics of abyssal epibenthic megafauna in the northeast Pacific. Ecology 88, 1250–1262 (2007).
Google Scholar
Billett, D. S. M. Deep-sea holothurians. Oceanogr. Mar. Biol. An Annu. Rev. 29, 259–317 (1991).
Bett, B. J., Malzone, M. G., Narayanaswamy, B. E. & Wigham, B. D. Temporal variability in phytodetritus and megabenthic activity at the seabed in the deep northeast Atlantic. Prog. Oceanogr. 50, 349–368 (2001).
Google Scholar
Durden, J. M. et al. Response of deep-sea deposit-feeders to detrital inputs: A comparison of two abyssal time-series sites. Deep. Res. Part II Top. Stud. Oceanogr. 173, 104677 (2020).
Khripounoff, A. & Sibuet, M. L. nutrition d’echinodermes abyssaux I. Alimentation des holothuries. Mar. Biol. 60, 17–26 (1980).
Google Scholar
Roberts, D., Gebruka, A., Levin, V. & Manship, B. A. D. Feeding and digestive strategies in deposit-feeding holothurians. Oceanogr. Mar. Biol. Annu. Rev. 38, 257–310 (2000).
FitzGeorge-Balfour, T., Billett, D. S. M., Wolff, G. A., Thompson, A. & Tyler, P. A. Phytopigments as biomarkers of selectivity in abyssal holothurians; interspecific differences in response to a changing food supply. Deep. Res. Part II Top. Stud. Oceanogr. 57, 1418–1428 (2010).
Miller, R. J., Smith, C. R., Demaster, D. J. & Fornes, W. L. Feeding selectivity and rapid particle processing by deep-sea megafaunal deposit feeders : A 234 Th tracer approach. J. Mar. Res. 58, 653–673 (2000).
Google Scholar
Witte, U. et al. In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Lett. Nat. 424, 763–766 (2003).
Google Scholar
Moore, H., Manship, B. & Roberts, D. Gut structure and digestive strategies in three species of abyssal holothurians. in Echinoderm Research 111–119 (Balkema, 1995).
Deming, J. W. & Colwell, R. R. Barophilic bacteria associated with digestive tracts of abyssal holothurians. Appl. Environ. Microbiol. 44, 1222–1230 (1982).
Google Scholar
Amaro, T., Luna, G. M., Danovaro, R., Billett, D. S. M. & Cunha, M. R. High prokaryotic biodiversity associated with gut contents of the holothurian Molpadia musculus from the Nazaré Canyon (NE Atlantic). Deep. Res. Part I Oceanogr. Res. Pap. 63, 82–90 (2012).
Roberts, D. et al. Sediment distribution, hydrolytic enzyme profiles and bacterial activities in the guts of Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus villosus: What do they tell us about digestive strategies of abyssal holothurians?. Prog. Oceanogr. 50, 443–458 (2001).
Google Scholar
Sibuet, M., Khripounoff, A., Deming, J., Colwell, R. & Dinet, A. Modification of the gut contents in the digestive tract of abyssal holothurians. In Proceedings of the International Echinoderm Conference. Tampa Bay. (ed Lawrence, J. M.) 421–428 (Balkema, 1982).
Bradley, C. J. et al. Trophic position estimates of marine teleosts using amino acid compound specific isotopic analysis. Limnol. Oceanogr. Methods 13, 476–493 (2015).
Google Scholar
Ohkouchi, N. et al. Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Org. Geochem. 113, 150–174 (2017).
Google Scholar
Popp, B. N. et al. Stable isotopes as indicators of ecological change. Terr. Ecol. 1, 173–190 (2007).
Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).
Google Scholar
McClelland, J. W. & Montoya, J. P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83, 2173–2180 (2002).
Google Scholar
Steffan, S. A. et al. Microbes are trophic analogs of animals. Proc. Natl. Acad. Sci. U. S. A. 112, 15119–15124 (2015).
Google Scholar
Yamaguchi, Y. T. et al. Fractionation of nitrogen isotopes during amino acid metabolism in heterotrophic and chemolithoautotrophic microbes across Eukarya, Bacteria, and Archaea: Effects of nitrogen sources and metabolic pathways. Org. Geochem. 111, 101–112 (2017).
Google Scholar
Iken, K., Brey, T., Wand, U., Voigt, J. & Junghans, P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): A stable isotope analysis. Prog. Oceanogr. 50, 383–405 (2001).
Google Scholar
Romero-Romero, S. et al. Seasonal pathways of organic matter within the Avilés submarine canyon: Food web implications. Deep. Res. Part I. Oceanogr. Res. Pap. 117, 1–10 (2016).
Google Scholar
Reid, W., Wigham, B., McGill, R. & Polunin, N. Elucidating trophic pathways in benthic deep-sea assemblages of the Mid-Atlantic Ridge north and south of the Charlie-Gibbs fracture zone. Mar. Ecol. Prog. Ser. 463, 89–103 (2012).
Google Scholar
Drazen, J. et al. Bypassing the abyssal benthic food web: Macrourid diet in the eastern North Pacific inferred from stomach content and stable isotopes analyses. Limnol. Oceanogr. 53, 2644–2654 (2008).
Google Scholar
Post, D. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).
Google Scholar
Witbaard, R., Duineveld, G. C. A., Kok, A., Van Der Weele, J. & Berghuis, E. M. The response of Oneirophanta mutabilis (Holothuroidea) to the seasonal deposition of phytopigments at the Porcupine Abyssal Plain in the Northeast Atlantic. Prog. Oceanogr. 50, 423–441 (2001).
Google Scholar
Wigham, B. D., Hudson, I. R., Billett, D. S. M. & Wolff, G. A. Is long-term change in the abyssal Northeast Atlantic driven by qualitative changes in export flux? Evidence from selective feeding in deep-sea holothurians. Prog. Oceanogr. 59, 409–441 (2003).
Google Scholar
Hudson, I. R., Wigham, B. D., Billett, D. S. M. & Tyler, P. A. Seasonality and selectivity in the feeding ecology and reproductive biology of deep-sea bathyal holothurians. Prog. Oceanogr. 59, 381–407 (2003).
Google Scholar
Lauerman, L. M. L., Smoak, J. M., Shaw, T. J., Moore, W. S. & Smith, K. L. 234Th and 210Pb evidence for rapid ingestion of settling particles by mobile epibenthic megafauna in the abyssal NE Pacific. Limnol. Oceanogr. 42, 589–595 (1997).
Google Scholar
Roberts, D., Billett, D. S. M., McCartney, G. & Hayes, G. E. Procaryotes on the tentacles of deep-sea holothurians: A novel form of dietary supplementation. Limnol. Oceanogr. 36, 1447–1451 (1991).
Google Scholar
Larsen, T., Lee Taylor, D., Leigh, M. B. & O’Brien, D. M. Stable isotope fingerprinting: A novel method for identifying plant, fungal, or bacterial origins of amino acids. Ecology 90, 3526–3535 (2009).
Plante, C. J., Jumars, P. A. & Baross, J. A. Digestive associations between marine detritivores and bacteria. Annu. Rev. Ecol. Syst. 21, 93–127 (1990).
Google Scholar
Drazen, J. C., Phleger, C. F., Guest, M. A. & Nichols, P. D. Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: Food web implications. Comp. Biochem. Physiol. – B Biochem. Mol. Biol. 151, 79–87 (2008).
Amaro, T. et al. Possible links between holothurian lipid compositions and differences in organic matter (OM) supply at the western Pacific abyssal plains. Deep. Res. Part I Oceanogr. Res. Pap. 152, (2019).
Kharlamenko, V. I., Maiorova, A. S. & Ermolenko, E. V. Fatty acid composition as an indicator of the trophic position of abyssal megabenthic deposit feeders in the Kuril Basin of the Sea of Okhotsk. Deep. Res. Part II Top. Stud. Oceanogr. 154, 374–382 (2018).
Ginger, M. L. et al. Organic matter assimilation and selective feeding by holothurians in the deep sea: Some observations and comments. Prog. Oceanogr. 50, 407–421 (2001).
Google Scholar
McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821 (2016).
Google Scholar
Kaufmann, R. S. & Smith, K. L. Activity patterns of mobile epibenthic megafauna at an abyssal site in the eastern North Pacific: Results from a 17-month time-lapse photographic study. Deep. Res. Part I Oceanogr. Res. Pap. 44, 559–579 (1997).
Kuhnz, L. A., Ruhl, H. A., Huffard, C. L. & Smith, K. L. Rapid changes and long-term cycles in the benthic megafaunal community observed over 24 years in the abyssal northeast Pacific. Prog. Oceanogr. 124, 1–11 (2014).
Google Scholar
Vardaro, M. F., Ruhl, H. A. & Smith, K. L. Climate variation, carbon flux, and bioturbation in the abyssal north pacific. Limnol. Oceanogr. 54, 2081–2088 (2009).
Google Scholar
Ziegler, A., Mooi, R., Rolet, G. & De Ridder, C. Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea). BMC Evol. Biol. 10, 313 (2010).
Google Scholar
McCarthy, M. D., Benner, R., Lee, C. & Fogel, M. L. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71, 4727–4744 (2007).
Google Scholar
Calleja, M. L., Batista, F., Peacock, M., Kudela, R. & McCarthy, M. D. Changes in compound specific δ15N amino acid signatures and d/l ratios in marine dissolved organic matter induced by heterotrophic bacterial reworking. Mar. Chem. 149, 32–44 (2013).
Google Scholar
Smith, K. L., Ruhl, H. A., Kaufmann, R. S. & Kahru, M. Tracing abyssal food supply back to upper-ocean processes over a 17-year time series in the northeast Pacific. Limnol. Oceanogr. 53, 2655–2667 (2008).
Google Scholar
Huffard, C. L., Kuhnz, L. A., Lemon, L., Sherman, A. D. & Smith, K. L. Demographic indicators of change in a deposit-feeding abyssal holothurian community (Station M, 4000 m). Deep. Res. Part I Oceanogr. Res. Pap. 109, 27–39 (2016).
Hannides, C. C. S., Popp, B. N., Anela Choy, C. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope perspective. Limnol. Oceanogr. 58, 1931–1936 (2013).
Neto, R. R., Wolff, G. A., Billett, D. S. M., Mackenzie, K. L. & Thompson, A. The influence of changing food supply on the lipid biochemistry of deep-sea holothurians. Deep. Res. Part I Oceanogr. Res. Pap. 53, 516–527 (2006).
Amaro, T., Witte, H., Herndl, G. J., Cunha, M. R. & Billett, D. S. M. Deep-sea bacterial communities in sediments and guts of deposit-feeding holothurians in Portuguese canyons (NE Atlantic). Deep Res. Part I Oceanogr. Res. Pap. 56, 1834–1843 (2009).
Google Scholar
Silfer, J. A., Engel, M. H., Macko, S. A. & Jumeau, E. J. Stable carbon isotope analysis of amino acid enantiomers by conventional isotope ratio mass spectrometry and combined gas chromatography/isotope ratio mass spectrometry. Anal. Chem. 63, 370–374 (1991).
Google Scholar
Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. 164, 343–361 (2017).
Google Scholar
Dauwe, B., Middelburg, J. J., Herman, P. M. J. & Heip, C. H. R. Linking diagenetic alteration of amino acids and bulk organic matter reactivity. Limnology 44, 1809–1814 (1999).
Google Scholar
McCarthy, M. D., Benner, R., Lee, C., Hedges, J. I. & Fogel, M. L. Amino acid carbon isotopic fractionation patterns in oceanic dissolved organic matter: An unaltered photoautotrophic source for dissolved organic nitrogen in the ocean?. Mar. Chem. 92, 123–134 (2004).
Google Scholar
R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Core Team. R Foundation for Statistical Computing, 2020).
Source: Ecology - nature.com