in

Abyssal deposit feeders are secondary consumers of detritus and rely on nutrition derived from microbial communities in their guts

  • 1.

    Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996).

    Article 

    Google Scholar 

  • 2.

    Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).

    Article 

    Google Scholar 

  • 3.

    Coleman, D. C., Andrews, R., Ellis, J. E. & Singh, J. S. Energy flow and partitioning in selected man-managed and natural ecosystems. Agro-Ecosyst. 3, 45–54 (1976).

    Article 

    Google Scholar 

  • 4.

    Steffan, S. A. et al. Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory. Ecol. Evol. 7, 3532–3541 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Coleman, D. C. Energetics of detritivory and microbivory in soil in theory and practice. In Food Webs (eds. Polis G. A. & Winemiller K. O.) 39–50 (Springer, 1996).

    Chapter 

    Google Scholar 

  • 6.

    Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Hagen, E. M. et al. A meta-analysis of the effects of detritus on primary producers and consumers in marine, freshwater, and terrestrial ecosystems. Oikos 121, 1507–1515 (2012).

    Article 

    Google Scholar 

  • 8.

    Danovaro, R., Snelgrove, P. V. R. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Gage, J. D. & Tyler, P. A. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor. (Cambridge University Press, 1991).

    Book 

    Google Scholar 

  • 11.

    De La Rocha, C. L. & Passow, U. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Res. Part II Top. Stud. Oceanogr. 54, 639–658 (2007).

    Article 

    Google Scholar 

  • 12.

    Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M. & Kahru, M. Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc. Natl. Acad. Sci. USA. 115, 12235–12240 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Ramirez-Llodra, E. et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Ruhl, H. A. Abundance and size distribution dynamics of abyssal epibenthic megafauna in the northeast Pacific. Ecology 88, 1250–1262 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Billett, D. S. M. Deep-sea holothurians. Oceanogr. Mar. Biol. An Annu. Rev. 29, 259–317 (1991).

    Google Scholar 

  • 16.

    Bett, B. J., Malzone, M. G., Narayanaswamy, B. E. & Wigham, B. D. Temporal variability in phytodetritus and megabenthic activity at the seabed in the deep northeast Atlantic. Prog. Oceanogr. 50, 349–368 (2001).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Durden, J. M. et al. Response of deep-sea deposit-feeders to detrital inputs: A comparison of two abyssal time-series sites. Deep. Res. Part II Top. Stud. Oceanogr. 173, 104677 (2020).

  • 18.

    Khripounoff, A. & Sibuet, M. L. nutrition d’echinodermes abyssaux I. Alimentation des holothuries. Mar. Biol. 60, 17–26 (1980).

    Article 

    Google Scholar 

  • 19.

    Roberts, D., Gebruka, A., Levin, V. & Manship, B. A. D. Feeding and digestive strategies in deposit-feeding holothurians. Oceanogr. Mar. Biol. Annu. Rev. 38, 257–310 (2000).

    Google Scholar 

  • 20.

    FitzGeorge-Balfour, T., Billett, D. S. M., Wolff, G. A., Thompson, A. & Tyler, P. A. Phytopigments as biomarkers of selectivity in abyssal holothurians; interspecific differences in response to a changing food supply. Deep. Res. Part II Top. Stud. Oceanogr. 57, 1418–1428 (2010).

  • 21.

    Miller, R. J., Smith, C. R., Demaster, D. J. & Fornes, W. L. Feeding selectivity and rapid particle processing by deep-sea megafaunal deposit feeders : A 234 Th tracer approach. J. Mar. Res. 58, 653–673 (2000).

    Article 

    Google Scholar 

  • 22.

    Witte, U. et al. In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Lett. Nat. 424, 763–766 (2003).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Moore, H., Manship, B. & Roberts, D. Gut structure and digestive strategies in three species of abyssal holothurians. in Echinoderm Research 111–119 (Balkema, 1995).

  • 24.

    Deming, J. W. & Colwell, R. R. Barophilic bacteria associated with digestive tracts of abyssal holothurians. Appl. Environ. Microbiol. 44, 1222–1230 (1982).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Amaro, T., Luna, G. M., Danovaro, R., Billett, D. S. M. & Cunha, M. R. High prokaryotic biodiversity associated with gut contents of the holothurian Molpadia musculus from the Nazaré Canyon (NE Atlantic). Deep. Res. Part I Oceanogr. Res. Pap. 63, 82–90 (2012).

  • 26.

    Roberts, D. et al. Sediment distribution, hydrolytic enzyme profiles and bacterial activities in the guts of Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus villosus: What do they tell us about digestive strategies of abyssal holothurians?. Prog. Oceanogr. 50, 443–458 (2001).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Sibuet, M., Khripounoff, A., Deming, J., Colwell, R. & Dinet, A. Modification of the gut contents in the digestive tract of abyssal holothurians. In Proceedings of the International Echinoderm Conference. Tampa Bay. (ed Lawrence, J. M.) 421–428 (Balkema, 1982).

    Google Scholar 

  • 28.

    Bradley, C. J. et al. Trophic position estimates of marine teleosts using amino acid compound specific isotopic analysis. Limnol. Oceanogr. Methods 13, 476–493 (2015).

    Article 

    Google Scholar 

  • 29.

    Ohkouchi, N. et al. Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Org. Geochem. 113, 150–174 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Popp, B. N. et al. Stable isotopes as indicators of ecological change. Terr. Ecol. 1, 173–190 (2007).

    Google Scholar 

  • 31.

    Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).

    CAS 
    Article 

    Google Scholar 

  • 32.

    McClelland, J. W. & Montoya, J. P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83, 2173–2180 (2002).

    Article 

    Google Scholar 

  • 33.

    Steffan, S. A. et al. Microbes are trophic analogs of animals. Proc. Natl. Acad. Sci. U. S. A. 112, 15119–15124 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Yamaguchi, Y. T. et al. Fractionation of nitrogen isotopes during amino acid metabolism in heterotrophic and chemolithoautotrophic microbes across Eukarya, Bacteria, and Archaea: Effects of nitrogen sources and metabolic pathways. Org. Geochem. 111, 101–112 (2017).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Iken, K., Brey, T., Wand, U., Voigt, J. & Junghans, P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): A stable isotope analysis. Prog. Oceanogr. 50, 383–405 (2001).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Romero-Romero, S. et al. Seasonal pathways of organic matter within the Avilés submarine canyon: Food web implications. Deep. Res. Part I. Oceanogr. Res. Pap. 117, 1–10 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Reid, W., Wigham, B., McGill, R. & Polunin, N. Elucidating trophic pathways in benthic deep-sea assemblages of the Mid-Atlantic Ridge north and south of the Charlie-Gibbs fracture zone. Mar. Ecol. Prog. Ser. 463, 89–103 (2012).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Drazen, J. et al. Bypassing the abyssal benthic food web: Macrourid diet in the eastern North Pacific inferred from stomach content and stable isotopes analyses. Limnol. Oceanogr. 53, 2644–2654 (2008).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Post, D. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article 

    Google Scholar 

  • 40.

    Witbaard, R., Duineveld, G. C. A., Kok, A., Van Der Weele, J. & Berghuis, E. M. The response of Oneirophanta mutabilis (Holothuroidea) to the seasonal deposition of phytopigments at the Porcupine Abyssal Plain in the Northeast Atlantic. Prog. Oceanogr. 50, 423–441 (2001).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Wigham, B. D., Hudson, I. R., Billett, D. S. M. & Wolff, G. A. Is long-term change in the abyssal Northeast Atlantic driven by qualitative changes in export flux? Evidence from selective feeding in deep-sea holothurians. Prog. Oceanogr. 59, 409–441 (2003).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Hudson, I. R., Wigham, B. D., Billett, D. S. M. & Tyler, P. A. Seasonality and selectivity in the feeding ecology and reproductive biology of deep-sea bathyal holothurians. Prog. Oceanogr. 59, 381–407 (2003).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Lauerman, L. M. L., Smoak, J. M., Shaw, T. J., Moore, W. S. & Smith, K. L. 234Th and 210Pb evidence for rapid ingestion of settling particles by mobile epibenthic megafauna in the abyssal NE Pacific. Limnol. Oceanogr. 42, 589–595 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 44.

    Roberts, D., Billett, D. S. M., McCartney, G. & Hayes, G. E. Procaryotes on the tentacles of deep-sea holothurians: A novel form of dietary supplementation. Limnol. Oceanogr. 36, 1447–1451 (1991).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Larsen, T., Lee Taylor, D., Leigh, M. B. & O’Brien, D. M. Stable isotope fingerprinting: A novel method for identifying plant, fungal, or bacterial origins of amino acids. Ecology 90, 3526–3535 (2009).

  • 46.

    Plante, C. J., Jumars, P. A. & Baross, J. A. Digestive associations between marine detritivores and bacteria. Annu. Rev. Ecol. Syst. 21, 93–127 (1990).

    Article 

    Google Scholar 

  • 47.

    Drazen, J. C., Phleger, C. F., Guest, M. A. & Nichols, P. D. Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: Food web implications. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 151, 79–87 (2008).

  • 48.

    Amaro, T. et al. Possible links between holothurian lipid compositions and differences in organic matter (OM) supply at the western Pacific abyssal plains. Deep. Res. Part I Oceanogr. Res. Pap. 152, (2019).

  • 49.

    Kharlamenko, V. I., Maiorova, A. S. & Ermolenko, E. V. Fatty acid composition as an indicator of the trophic position of abyssal megabenthic deposit feeders in the Kuril Basin of the Sea of Okhotsk. Deep. Res. Part II Top. Stud. Oceanogr. 154, 374–382 (2018).

  • 50.

    Ginger, M. L. et al. Organic matter assimilation and selective feeding by holothurians in the deep sea: Some observations and comments. Prog. Oceanogr. 50, 407–421 (2001).

    ADS 
    Article 

    Google Scholar 

  • 51.

    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821 (2016).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Kaufmann, R. S. & Smith, K. L. Activity patterns of mobile epibenthic megafauna at an abyssal site in the eastern North Pacific: Results from a 17-month time-lapse photographic study. Deep. Res. Part I Oceanogr. Res. Pap. 44, 559–579 (1997).

  • 53.

    Kuhnz, L. A., Ruhl, H. A., Huffard, C. L. & Smith, K. L. Rapid changes and long-term cycles in the benthic megafaunal community observed over 24 years in the abyssal northeast Pacific. Prog. Oceanogr. 124, 1–11 (2014).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Vardaro, M. F., Ruhl, H. A. & Smith, K. L. Climate variation, carbon flux, and bioturbation in the abyssal north pacific. Limnol. Oceanogr. 54, 2081–2088 (2009).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Ziegler, A., Mooi, R., Rolet, G. & De Ridder, C. Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea). BMC Evol. Biol. 10, 313 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    McCarthy, M. D., Benner, R., Lee, C. & Fogel, M. L. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71, 4727–4744 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 57.

    Calleja, M. L., Batista, F., Peacock, M., Kudela, R. & McCarthy, M. D. Changes in compound specific δ15N amino acid signatures and d/l ratios in marine dissolved organic matter induced by heterotrophic bacterial reworking. Mar. Chem. 149, 32–44 (2013).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Smith, K. L., Ruhl, H. A., Kaufmann, R. S. & Kahru, M. Tracing abyssal food supply back to upper-ocean processes over a 17-year time series in the northeast Pacific. Limnol. Oceanogr. 53, 2655–2667 (2008).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Huffard, C. L., Kuhnz, L. A., Lemon, L., Sherman, A. D. & Smith, K. L. Demographic indicators of change in a deposit-feeding abyssal holothurian community (Station M, 4000 m). Deep. Res. Part I Oceanogr. Res. Pap. 109, 27–39 (2016).

  • 60.

    Hannides, C. C. S., Popp, B. N., Anela Choy, C. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope perspective. Limnol. Oceanogr. 58, 1931–1936 (2013).

  • 61.

    Neto, R. R., Wolff, G. A., Billett, D. S. M., Mackenzie, K. L. & Thompson, A. The influence of changing food supply on the lipid biochemistry of deep-sea holothurians. Deep. Res. Part I Oceanogr. Res. Pap. 53, 516–527 (2006).

  • 62.

    Amaro, T., Witte, H., Herndl, G. J., Cunha, M. R. & Billett, D. S. M. Deep-sea bacterial communities in sediments and guts of deposit-feeding holothurians in Portuguese canyons (NE Atlantic). Deep Res. Part I Oceanogr. Res. Pap. 56, 1834–1843 (2009).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Silfer, J. A., Engel, M. H., Macko, S. A. & Jumeau, E. J. Stable carbon isotope analysis of amino acid enantiomers by conventional isotope ratio mass spectrometry and combined gas chromatography/isotope ratio mass spectrometry. Anal. Chem. 63, 370–374 (1991).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. 164, 343–361 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Dauwe, B., Middelburg, J. J., Herman, P. M. J. & Heip, C. H. R. Linking diagenetic alteration of amino acids and bulk organic matter reactivity. Limnology 44, 1809–1814 (1999).

    CAS 

    Google Scholar 

  • 66.

    McCarthy, M. D., Benner, R., Lee, C., Hedges, J. I. & Fogel, M. L. Amino acid carbon isotopic fractionation patterns in oceanic dissolved organic matter: An unaltered photoautotrophic source for dissolved organic nitrogen in the ocean?. Mar. Chem. 92, 123–134 (2004).

    CAS 
    Article 

    Google Scholar 

  • 67.

    R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Core Team. R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    Why the Earth needs a course correction now

    Diving into the global problem of technology waste