Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
Google Scholar
Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).
Google Scholar
Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–358 (2010).
Google Scholar
Invasive Species Specialist Group IUCN guidelines for the prevention of biodiversity loss caused by alien invasive species. https://portals.iucn.org/library/node/12673 (2000).
Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinction. Trends Ecol. Evol. 20, 110 (2005).
Google Scholar
Hassan, R., Scholes, R. J. & Ash, N. Ecosystems and human well-being: Current state and trends: Findings of the Condition and Trends working group (Millennium Ecosystem Assessment Series) (Island Press, 2005).
Vitousek, P. M., D’Antonio, C. M., Loope, L. L., Rejmánek, M. & Westbrooks, R. Introduced species: A significant component of human-caused global change. N. Z. J. Ecol. 21, 1–16 (1997).
Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).
Google Scholar
Hulme, P. E. Beyond control: Wider implications for the management of biological invasions. J. Appl. Ecol. 43, 835–847 (2006).
Google Scholar
Vander Zanden, M. J., Hansen, G. J. A., Higgins, S. N. & Kornis, M. S. A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. J. Great Lakes Res. 36, 199–205 (2010).
Google Scholar
Myers, J. H., Simberloff, D., Kuris, A. M. & Carey, J. R. Eradication revisited: Dealing with exotic species. Trends Ecol. Evol. 15, 316–320 (2000).
Google Scholar
Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).
Google Scholar
McDonald, L. L. Sampling rare populations. In Sampling Rare or Elusive Species (ed. Thompson, W. L.) 11–42 (Island Press, 2004).
Harvey, C. T., Qureshi, S. A. & MacIsaac, H. J. Detection of a colonizing, aquatic, non-indigenous species. Divers. Distrib. 15, 429–437 (2009).
Google Scholar
Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).
Google Scholar
Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).
Google Scholar
Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).
Google Scholar
Thomsen, P. F. & Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
Google Scholar
Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).
Google Scholar
Brys, R. et al. Monitoring of spatio-temporal occupancy patterns of fish and amphibian species in a lentic aquatic system using environmental DNA. Mol. Ecol. https://doi.org/10.1111/mec.15742 (2021).
Google Scholar
Smart, A. S. et al. Assessing the cost-efficiency of environmental DNA sampling. Methods Ecol. Evol. 7, 1291–1298 (2016).
Google Scholar
Wilcox, T. M. et al. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biol. Conserv. 194, 209–216 (2016).
Google Scholar
Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).
Google Scholar
Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).
Google Scholar
Furlan, E. M., Gleeson, D., Hardy, C. M. & Duncan, R. P. A framework for estimating the sensitivity of eDNA surveys. Mol. Ecol. Resour. 16, 641–654 (2016).
Google Scholar
Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).
Google Scholar
Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are environmental DNA methods ready for aquatic invasive species management?. Trends Ecol. Evol. 35, 668–678 (2020).
Google Scholar
Wilcox, T. M. et al. Robust detection of rare species using environmental DNA: The importance of primer specificity. PLoS One 8, e59520. https://doi.org/10.1371/journal.pone.0059520 (2013).
Google Scholar
Freeland, J. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA (eDNA). Genome 60, 358–374 (2016).
Google Scholar
Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).
Google Scholar
Veldhoen, N. et al. Implementation of novel design features for qPCR-based eDNA assessment. PLoS One 11, e0164907. https://doi.org/10.1371/journal.pone.0164907 (2016).
Google Scholar
Lin, M., Zhang, S. & Yao, M. Effective detection of environmental DNA from the invasive American bullfrog. Biol. Invasions 21, 2255–2268 (2019).
Google Scholar
Thalinger, B. et al. A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environ. DNA https://doi.org/10.1002/edn3.189 (2021).
Google Scholar
Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).
Google Scholar
Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).
Google Scholar
Nathan, L. M., Simmons, M., Wegleitner, B. J., Jerde, C. L. & Mahon, A. R. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environ. Sci. Technol. 48, 12800–12806 (2014).
Google Scholar
Doi, H. et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS One 10, e0122763. https://doi.org/10.1371/journal.pone.0122763 (2015).
Google Scholar
Brys, R. et al. Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis). J. Fish Biol. https://doi.org/10.1111/jfb.14315 (2020).
Google Scholar
Lacoursière-Roussel, A., Côté, G., Leclerc, V. & Bernatchez, L. Quantifying relative fish abundance with eDNA: A promising tool for fisheries management. J. Appl. Ecol. 53, 1148–1157 (2016).
Google Scholar
Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).
Google Scholar
Buxton, A. S., Groombridge, J. J., Zakaria, N. B. & Griffiths, R. A. Seasonal variation in environmental DNA in relation to population size and environmental factors. Sci. Rep. 7, 46294. https://doi.org/10.1038/srep46294 (2017).
Google Scholar
Takahara, T., Iwai, N., Yasumiba, K. & Takeshi, I. Comparison of the detection of 3 endangered frog species by eDNA and acoustic surveys across 3 seasons. Freshw. Sci. 39, 18–27 (2020).
Google Scholar
Kats, L. B. & Ferrer, R. P. Alien predators and amphibian declines: Review of two decades of science and the transition to conservation. Divers. Distrib. 9, 99–110 (2003).
Google Scholar
Martel, A. et al. The novel ‘Candidatus Amphibiichlamydia ranarum’ is highly prevalent in invasive exotic bullfrogs (Lithobates catesbeianus). Environ. Microbiol. Rep. 5, 105–108 (2012).
Google Scholar
Blaustein, A. R. et al. Effects of invasive larval bullfrogs (Rana catesbeiana) on disease transmission, growth and survival in the larvae of native amphibians. Biol. Invasions 22, 1771–1784 (2020).
Google Scholar
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species. A selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), First published as special lift-out in Aliens 12 (2000).
Adams, M. J. & Pearl, C. A. Problems and opportunities managing invasive bullfrogs: Is there any hope? In Biological Invaders in Waters: Profiles, Distribution and Threats (ed. Gherardi, F.) 679–693 (Springer, Paris, 2007).
Louette, G., Devisscher, S. & Adriaens, T. Combating adult invasive American bullfrog Lithobates catesbeianus. Eur. J. Wildl. Res. 60, 703–706 (2014).
Google Scholar
Kamoroff, C. et al. Effective removal of the American bullfrog (Lithobates catesbeianus) on a landscape level: Long term monitoring and removal efforts in Yosemite Valley, Yosemite National Park. Biol Invasions 22, 617–626 (2020).
Google Scholar
Jooris, R. Palmt de stierkikker uit Noord-Amerika ook Vlaanderen in?. Natuur. Focus 1, 13–15 (2001).
Adriaens, T., Devisscher, S. & Louette, G. Risk analysis of American bullfrog, Lithobates catesbeianus. Risk analysis report of non-native organisms in Belgium. Rapporten van het Instituut voor Natuur- en Bosonderzoek 41. https://doi.org/10.13140/2.1.2431.5688 (2013).
Descamps, S. & De Vocht, A. Movements and habitat use of the invasive species Lithobates catesbeianus in the valley of the Grote Nete (Belgium). Belg. J. Zool. 146, 90–100 (2016).
Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).
Google Scholar
Lefever, S., Pattyn, F., Hellemans, J. & Vandesompele, J. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin. Chem. 59, 1470–1480 (2013).
Google Scholar
Erligh, H. A., Gelfand, D. & Sninsky, J. J. Recent advances in the polymerase chain reaction. Science 252, 1643–1651 (1991).
Google Scholar
Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026 (2012).
Google Scholar
Lievens, A., Jacchia, S., Kagkli, D., Savini, C. & Querci, M. Measuring digital PCR quality: Performance parameters and their optimization. PLoS One 11, e0153317. https://doi.org/10.1371/journal.pone.0153317 (2016).
Google Scholar
Pecoraro, S. et al. Overview and recommendations for the application of digital PCR. EUR 29673 EN, Publications Office of the European Union. https://doi.org/10.2760/192883 (2019).
Harper, L. R. et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826, 25–41 (2019).
Google Scholar
Doi, H. et al. Droplet digital PCR outperforms real-time PCR in the detection of environmental DNA from an invasive fish species. Environ. Sci. Technol. 49, 5601–5608 (2015).
Google Scholar
Wells, K. D. (ed.) The Ecology and Behavior of Amphibians (The University of Chicago Press, 2007).
Willis, Y. L., Moyle, D. I. & Baskett, T. S. Emergence, breeding, hibernation, movements and transformation of the bullfrog, Rana catesbeiana Missouri. Copeia 1, 30–41 (1956).
Google Scholar
Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M. & Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS One 9, e114639. https://doi.org/10.1371/journal.pone.0114639 (2014).
Google Scholar
Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).
Google Scholar
Lance, R. F. et al. Experimental observations on the decay of environmental DNA from bighead and silver carps. Manag. Biol. Invasions 8, 343–359 (2017).
Google Scholar
Hoorfar, J. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J. Clin. Microbiol. 42, 1863–1868 (2004).
Google Scholar
Devisscher, S. et al. Beheer van de stierkikker in Vlaanderen en Nederland. Rapporten van het Instituut voor Natuur- en Bosonderzoek 52. https://www.researchgate.net/publication/235789235 (2012).
Bylemans, J. et al. An environmental DNA-based method for monitoring spawning activity: A case study using the endangered Macquarie perch (Macquaria australasica). Methods Ecol. Evol. 8, 646–655 (2017).
Google Scholar
Dunn, N., Priestley, V., Herraiz, A., Arnold, R. & Savolainen, V. Behavior and season affect crayfish detection and density inference using environmental DNA. Ecol. Evol. 7, 7777–7785 (2017).
Google Scholar
Bury, R. B. & Whelan, J. A. Ecology and management of the bullfrog. U.S. Fish and Wildlife Service 155 (1984).
Gahl, M. K., Calhoun, A. J. K. & Graves, R. Facultative use of seasonal pools by American bullfrogs (Rana catesbeiana). Wetlands 29, 697–703 (2009).
Google Scholar
Biek, R., Funk, C., Maxell, B. A. & Mills, L. S. What is missing in amphibian decline research: Insights from ecological sensitivity analysis. Conserv. Biol. 16, 728–734 (2002).
Google Scholar
Govindarajulu, P., Altwegg, R. & Anholt, B. R. Matrix model investigation of invasive species control: Bullfrogs on Vancouver Island. Ecol. Appl. 15, 2161–2170 (2005).
Google Scholar
Carim, K. J. et al. Environmental DNA sampling informs fish eradication efforts: Case studies and lessons learned. N. Am. J. Fish. 40, 488–508 (2020).
Google Scholar
Riaz, T. et al. ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39, e145. https://doi.org/10.1093/nar/gkr732 (2011).
Google Scholar
Moyer, G. R., Díaz-Ferguson, E., Hill, J. E. & Shea, C. Assessing environmental DNA detection in controlled lentic systems. PLoS One 9, e103767. https://doi.org/10.1371/journal.pone.0103767 (2014).
Google Scholar
Turner, C. R. et al. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol. Evol. 7, 676–684 (2014).
Google Scholar
U.S. Fish and Wildlife Service. Quality assurance project plan: eDNA monitoring of bighead and silver carps. https://www.fws.gov/midwest/fisheries/eDNA/documents/QAPP.pdf (2017).
Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: Advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2017).
Google Scholar
RStudio Team (2020) RStudio: Integrated Development Environment for R. RStudio, PBC. http://www.rstudio.com/.
Source: Ecology - nature.com