in

Accurate detection and quantification of seasonal abundance of American bullfrog (Lithobates catesbeianus) using ddPCR eDNA assays

  • 1.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–358 (2010).

    Article 

    Google Scholar 

  • 4.

    Invasive Species Specialist Group IUCN guidelines for the prevention of biodiversity loss caused by alien invasive species. https://portals.iucn.org/library/node/12673 (2000).

  • 5.

    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinction. Trends Ecol. Evol. 20, 110 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Hassan, R., Scholes, R. J. & Ash, N. Ecosystems and human well-being: Current state and trends: Findings of the Condition and Trends working group (Millennium Ecosystem Assessment Series) (Island Press, 2005).

  • 7.

    Vitousek, P. M., D’Antonio, C. M., Loope, L. L., Rejmánek, M. & Westbrooks, R. Introduced species: A significant component of human-caused global change. N. Z. J. Ecol. 21, 1–16 (1997).

    Google Scholar 

  • 8.

    Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).

    Article 

    Google Scholar 

  • 9.

    Hulme, P. E. Beyond control: Wider implications for the management of biological invasions. J. Appl. Ecol. 43, 835–847 (2006).

    Article 

    Google Scholar 

  • 10.

    Vander Zanden, M. J., Hansen, G. J. A., Higgins, S. N. & Kornis, M. S. A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. J. Great Lakes Res. 36, 199–205 (2010).

    Article 

    Google Scholar 

  • 11.

    Myers, J. H., Simberloff, D., Kuris, A. M. & Carey, J. R. Eradication revisited: Dealing with exotic species. Trends Ecol. Evol. 15, 316–320 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).

    Article 

    Google Scholar 

  • 13.

    McDonald, L. L. Sampling rare populations. In Sampling Rare or Elusive Species (ed. Thompson, W. L.) 11–42 (Island Press, 2004).

    Google Scholar 

  • 14.

    Harvey, C. T., Qureshi, S. A. & MacIsaac, H. J. Detection of a colonizing, aquatic, non-indigenous species. Divers. Distrib. 15, 429–437 (2009).

    Article 

    Google Scholar 

  • 15.

    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).

    Article 

    Google Scholar 

  • 17.

    Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Thomsen, P. F. & Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article 

    Google Scholar 

  • 19.

    Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Brys, R. et al. Monitoring of spatio-temporal occupancy patterns of fish and amphibian species in a lentic aquatic system using environmental DNA. Mol. Ecol. https://doi.org/10.1111/mec.15742 (2021).

    Article 

    Google Scholar 

  • 21.

    Smart, A. S. et al. Assessing the cost-efficiency of environmental DNA sampling. Methods Ecol. Evol. 7, 1291–1298 (2016).

    Article 

    Google Scholar 

  • 22.

    Wilcox, T. M. et al. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biol. Conserv. 194, 209–216 (2016).

    Article 

    Google Scholar 

  • 23.

    Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).

    Article 

    Google Scholar 

  • 24.

    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Furlan, E. M., Gleeson, D., Hardy, C. M. & Duncan, R. P. A framework for estimating the sensitivity of eDNA surveys. Mol. Ecol. Resour. 16, 641–654 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).

    Article 

    Google Scholar 

  • 27.

    Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are environmental DNA methods ready for aquatic invasive species management?. Trends Ecol. Evol. 35, 668–678 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Wilcox, T. M. et al. Robust detection of rare species using environmental DNA: The importance of primer specificity. PLoS One 8, e59520. https://doi.org/10.1371/journal.pone.0059520 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Freeland, J. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA (eDNA). Genome 60, 358–374 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).

    Article 

    Google Scholar 

  • 31.

    Veldhoen, N. et al. Implementation of novel design features for qPCR-based eDNA assessment. PLoS One 11, e0164907. https://doi.org/10.1371/journal.pone.0164907 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Lin, M., Zhang, S. & Yao, M. Effective detection of environmental DNA from the invasive American bullfrog. Biol. Invasions 21, 2255–2268 (2019).

    Article 

    Google Scholar 

  • 33.

    Thalinger, B. et al. A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environ. DNA https://doi.org/10.1002/edn3.189 (2021).

    Article 

    Google Scholar 

  • 34.

    Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).

    Article 

    Google Scholar 

  • 35.

    Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Nathan, L. M., Simmons, M., Wegleitner, B. J., Jerde, C. L. & Mahon, A. R. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environ. Sci. Technol. 48, 12800–12806 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Doi, H. et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS One 10, e0122763. https://doi.org/10.1371/journal.pone.0122763 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Brys, R. et al. Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis). J. Fish Biol. https://doi.org/10.1111/jfb.14315 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 39.

    Lacoursière-Roussel, A., Côté, G., Leclerc, V. & Bernatchez, L. Quantifying relative fish abundance with eDNA: A promising tool for fisheries management. J. Appl. Ecol. 53, 1148–1157 (2016).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Buxton, A. S., Groombridge, J. J., Zakaria, N. B. & Griffiths, R. A. Seasonal variation in environmental DNA in relation to population size and environmental factors. Sci. Rep. 7, 46294. https://doi.org/10.1038/srep46294 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Takahara, T., Iwai, N., Yasumiba, K. & Takeshi, I. Comparison of the detection of 3 endangered frog species by eDNA and acoustic surveys across 3 seasons. Freshw. Sci. 39, 18–27 (2020).

    Article 

    Google Scholar 

  • 43.

    Kats, L. B. & Ferrer, R. P. Alien predators and amphibian declines: Review of two decades of science and the transition to conservation. Divers. Distrib. 9, 99–110 (2003).

    Article 

    Google Scholar 

  • 44.

    Martel, A. et al. The novel ‘Candidatus Amphibiichlamydia ranarum’ is highly prevalent in invasive exotic bullfrogs (Lithobates catesbeianus). Environ. Microbiol. Rep. 5, 105–108 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Blaustein, A. R. et al. Effects of invasive larval bullfrogs (Rana catesbeiana) on disease transmission, growth and survival in the larvae of native amphibians. Biol. Invasions 22, 1771–1784 (2020).

    Article 

    Google Scholar 

  • 46.

    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species. A selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), First published as special lift-out in Aliens 12 (2000).

  • 47.

    Adams, M. J. & Pearl, C. A. Problems and opportunities managing invasive bullfrogs: Is there any hope? In Biological Invaders in Waters: Profiles, Distribution and Threats (ed. Gherardi, F.) 679–693 (Springer, Paris, 2007).

    Google Scholar 

  • 48.

    Louette, G., Devisscher, S. & Adriaens, T. Combating adult invasive American bullfrog Lithobates catesbeianus. Eur. J. Wildl. Res. 60, 703–706 (2014).

    Article 

    Google Scholar 

  • 49.

    Kamoroff, C. et al. Effective removal of the American bullfrog (Lithobates catesbeianus) on a landscape level: Long term monitoring and removal efforts in Yosemite Valley, Yosemite National Park. Biol Invasions 22, 617–626 (2020).

    Article 

    Google Scholar 

  • 50.

    Jooris, R. Palmt de stierkikker uit Noord-Amerika ook Vlaanderen in?. Natuur. Focus 1, 13–15 (2001).

    Google Scholar 

  • 51.

    Adriaens, T., Devisscher, S. & Louette, G. Risk analysis of American bullfrog, Lithobates catesbeianus. Risk analysis report of non-native organisms in Belgium. Rapporten van het Instituut voor Natuur- en Bosonderzoek 41. https://doi.org/10.13140/2.1.2431.5688 (2013).

  • 52.

    Descamps, S. & De Vocht, A. Movements and habitat use of the invasive species Lithobates catesbeianus in the valley of the Grote Nete (Belgium). Belg. J. Zool. 146, 90–100 (2016).

    Google Scholar 

  • 53.

    Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).

    Article 

    Google Scholar 

  • 54.

    Lefever, S., Pattyn, F., Hellemans, J. & Vandesompele, J. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin. Chem. 59, 1470–1480 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Erligh, H. A., Gelfand, D. & Sninsky, J. J. Recent advances in the polymerase chain reaction. Science 252, 1643–1651 (1991).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Lievens, A., Jacchia, S., Kagkli, D., Savini, C. & Querci, M. Measuring digital PCR quality: Performance parameters and their optimization. PLoS One 11, e0153317. https://doi.org/10.1371/journal.pone.0153317 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Pecoraro, S. et al. Overview and recommendations for the application of digital PCR. EUR 29673 EN, Publications Office of the European Union. https://doi.org/10.2760/192883 (2019).

  • 59.

    Harper, L. R. et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826, 25–41 (2019).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Doi, H. et al. Droplet digital PCR outperforms real-time PCR in the detection of environmental DNA from an invasive fish species. Environ. Sci. Technol. 49, 5601–5608 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Wells, K. D. (ed.) The Ecology and Behavior of Amphibians (The University of Chicago Press, 2007).

    Google Scholar 

  • 62.

    Willis, Y. L., Moyle, D. I. & Baskett, T. S. Emergence, breeding, hibernation, movements and transformation of the bullfrog, Rana catesbeiana Missouri. Copeia 1, 30–41 (1956).

    Article 

    Google Scholar 

  • 63.

    Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M. & Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS One 9, e114639. https://doi.org/10.1371/journal.pone.0114639 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Lance, R. F. et al. Experimental observations on the decay of environmental DNA from bighead and silver carps. Manag. Biol. Invasions 8, 343–359 (2017).

    Article 

    Google Scholar 

  • 66.

    Hoorfar, J. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J. Clin. Microbiol. 42, 1863–1868 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Devisscher, S. et al. Beheer van de stierkikker in Vlaanderen en Nederland. Rapporten van het Instituut voor Natuur- en Bosonderzoek 52. https://www.researchgate.net/publication/235789235 (2012).

  • 68.

    Bylemans, J. et al. An environmental DNA-based method for monitoring spawning activity: A case study using the endangered Macquarie perch (Macquaria australasica). Methods Ecol. Evol. 8, 646–655 (2017).

    Article 

    Google Scholar 

  • 69.

    Dunn, N., Priestley, V., Herraiz, A., Arnold, R. & Savolainen, V. Behavior and season affect crayfish detection and density inference using environmental DNA. Ecol. Evol. 7, 7777–7785 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Bury, R. B. & Whelan, J. A. Ecology and management of the bullfrog. U.S. Fish and Wildlife Service 155 (1984).

  • 71.

    Gahl, M. K., Calhoun, A. J. K. & Graves, R. Facultative use of seasonal pools by American bullfrogs (Rana catesbeiana). Wetlands 29, 697–703 (2009).

    Article 

    Google Scholar 

  • 72.

    Biek, R., Funk, C., Maxell, B. A. & Mills, L. S. What is missing in amphibian decline research: Insights from ecological sensitivity analysis. Conserv. Biol. 16, 728–734 (2002).

    Article 

    Google Scholar 

  • 73.

    Govindarajulu, P., Altwegg, R. & Anholt, B. R. Matrix model investigation of invasive species control: Bullfrogs on Vancouver Island. Ecol. Appl. 15, 2161–2170 (2005).

    Article 

    Google Scholar 

  • 74.

    Carim, K. J. et al. Environmental DNA sampling informs fish eradication efforts: Case studies and lessons learned. N. Am. J. Fish. 40, 488–508 (2020).

    Article 

    Google Scholar 

  • 75.

    Riaz, T. et al. ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39, e145. https://doi.org/10.1093/nar/gkr732 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Moyer, G. R., Díaz-Ferguson, E., Hill, J. E. & Shea, C. Assessing environmental DNA detection in controlled lentic systems. PLoS One 9, e103767. https://doi.org/10.1371/journal.pone.0103767 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Turner, C. R. et al. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol. Evol. 7, 676–684 (2014).

    Article 

    Google Scholar 

  • 78.

    U.S. Fish and Wildlife Service. Quality assurance project plan: eDNA monitoring of bighead and silver carps. https://www.fws.gov/midwest/fisheries/eDNA/documents/QAPP.pdf (2017).

  • 79.

    Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: Advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2017).

    Article 

    Google Scholar 

  • 80.

    RStudio Team (2020) RStudio: Integrated Development Environment for R. RStudio, PBC. http://www.rstudio.com/.


  • Source: Ecology - nature.com

    3Q: The socio-environmental complexities of renewable energy

    Phonon catalysis could lead to a new field