in

Advanced characterization of biomineralization at plaque layer and inside rice roots amended with iron- and silica-enhanced biochar

  • 1.

    Normile, D. Reinventing rice to feed the world. Science 321, 330–333 (2008).

    MathSciNet  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants (Academic Press, London, 2012).

    Google Scholar 

  • 3.

    Vigani, G., Tarantino, D. & Murgia, I. Mitochondrial ferritin is a functional iron-storage protein in cucumber (Cucumis sativus) roots. Front. Plant Sci. 4, 316 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Violante, A., Barberis, E., Pigna, M. & Boero, V. Factors affecting the formation, nature, and properties of iron precipitation products at the soil-root interface. J. Plant Nutr. 26, 1889–1908 (2003).

    CAS  Article  Google Scholar 

  • 5.

    Pradhan, S. K. et al. Genetic regulation of homeostasis, uptake, bio-fortification and efficiency enhancement of iron in rice. Environ. Exp. Bot. 177, 104066 (2020).

    CAS  Article  Google Scholar 

  • 6.

    Kilcoyne, S. H., Bentley, P. M., Thongbai, P., Gordon, D. C. & Goodman, B. A. The application of 57Fe Mössbauer spectroscopy in the investigation of iron uptake and translocation in plants. Nucl. Instrum. Meth B 160, 157–166 (2000).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Zhang, A. et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 139, 469–475 (2010).

    CAS  Article  Google Scholar 

  • 8.

    Huang, M., Yang, L., Qin, H., Jiang, L. & Zou, Y. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies. Field Crops Res. 154, 172–177 (2013).

    Article  Google Scholar 

  • 9.

    Zhang, A. et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 127, 153–160 (2012).

    Article  Google Scholar 

  • 10.

    Kim, S. & Dale, B. E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 26, 361–375 (2004).

    Article  Google Scholar 

  • 11.

    Wang, Y., Xiao, X., Xu, Y. & Chen, B. Environmental effects of silicon within Biochar (Sichar) and carbon–silicon coupling mechanisms: A critical review. Environ. Sci. Technol. 53, 13570–13582 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 45, 629 (2007).

    CAS  Article  Google Scholar 

  • 13.

    Van Zwieten, L. et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235–246 (2009).

    Article  CAS  Google Scholar 

  • 14.

    Joseph, S. et al. Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 4, 323–343 (2013).

    CAS  Article  Google Scholar 

  • 15.

    Chew, J. et al. Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. Sci. Total Environ. 713, 136431 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Irshad, M. K. et al. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil. Sci. Total Environ. 717, 137086 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Zhang, J.-Y. et al. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.). Environ. Pollut. 260, 113970 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Chen, Z. et al. Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization. Environ. Pollut. 231, 549–559 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Küpper, H., Zhao, F. J. & McGrath, S. P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119, 305–312 (1999).

    PubMed Central  Article  Google Scholar 

  • 20.

    Blackwell, P. et al. Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere 25, 686–695 (2015).

    CAS  Article  Google Scholar 

  • 21.

    Rodriguez, N., Menendez, N., Tornero, J., Amils, R. & de la Fuente, V. Internal iron biomineralization in Imperata cylindrica, a perennial grass: Chemical composition, speciation and plant localization. New Phytol. 165, 781–789 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Neumann, D., Nieden, U. Z., Lichtenberger, O. & Leopold, I. How does Armeria maritima tolerate high heavy metal concentrations?. J. Plant Physiol. 146, 704–717 (1995).

    CAS  Article  Google Scholar 

  • 23.

    Liu, D. H., Adler, K. & Stephan, U. W. Iron-containing particles accumulate in organelles and vacuoles of leaf and root cells in the nicotianamine-free tomato mutantchloronerva. Protoplasma 201, 213–220 (1998).

    CAS  Article  Google Scholar 

  • 24.

    Alkhatib, R., Alkhatib, B., Abdo, N., Al-Eitan, L. & Creamer, R. Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant Biol. 19, 253 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    Fuente, V. et al. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv. J. Struct. Biol. 193, 23–32 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Graham, U. M. et al. Tissue specific fate of nanomaterials by advanced analytical imaging techniques—A review. Chem. Res. Toxicol. 33, 1145–1162 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Aoki, D. et al. Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM. Sci. Rep. 6, 31525 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Martin, R. R. et al. Time of flight secondary ion mass spectrometry studies of the distribution of metals between the soil, rhizosphere and roots of Populus tremuloides Minchx growing in forest soil. Chemosphere 54, 1121–1125 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Saito, K. et al. Aluminum localization in the cell walls of the mature xylem of maple tree detected by elemental imaging using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Holzforschung 68, 85–92 (2014).

    CAS  Article  Google Scholar 

  • 30.

    Hanć, A., Piechalak, A., Tomaszewska, B. & Barałkiewicz, D. Laser ablation inductively coupled plasma mass spectrometry in quantitative analysis and imaging of plant’s thin sections. Int. J. Mass spectrom. 363, 16–22 (2014).

    Article  CAS  Google Scholar 

  • 31.

    Shi, J., Gras, M. A. & Silk, W. K. Laser ablation ICP-MS reveals patterns of copper differing from zinc in growth zones of cucumber roots. Planta 229, 945–954 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Guizani, C., Haddad, K., Limousy, L. & Jeguirim, M. New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon 119, 519–521 (2017).

    CAS  Article  Google Scholar 

  • 33.

    Joseph, S. et al. An investigation into the reactions of biochar in soil. Soil Res. 48, 501–515 (2010).

    CAS  Article  Google Scholar 

  • 34.

    Prendergast-Miller, M. T., Duvall, M. & Sohi, S. P. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Sci. 65, 173–185 (2014).

    CAS  Article  Google Scholar 

  • 35.

    Nielsen, S. et al. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agric. Ecosyst. Environ. 191, 73–82 (2014).

    Article  Google Scholar 

  • 36.

    Hansel, C. M., Fendorf, S., Sutton, S. & Newville, M. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. 35, 3863–3868 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 37.

    Gloter, A., Zbinden, M., Guyot, F., Gaill, F. & Colliex, C. TEM-EELS study of natural ferrihydrite from geological–biological interactions in hydrothermal systems. Earth Planet. Sci. Lett. 222, 947–957 (2004).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Rajendran, M. et al. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere 222, 314–322 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Wu, C. et al. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL). Environ. Pollut. 212, 27–33 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Linke, R., Schreiner, M., Demortier, G. & Alram, M. Determination of the provenance of medieval silver coins: potential and limitations of X-ray analysis using photons, electrons or protons. X-ray Spectrom. 32, 373–380 (2003).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Haynes, R. J. A contemporary overview of silicon availability in agricultural soils. J. Plant Nutr. Soil Sci. 177, 831–844 (2014).

    CAS  Article  Google Scholar 

  • 42.

    Kostic, L. et al. Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. Biol. Fertility Soils 51, 289–298 (2014).

    Article  CAS  Google Scholar 

  • 43.

    Acosta-Martinez, V. & Tabatabai, M. Enzyme activities in a limed agricultural soil. Biol. Fertility Soils 31, 85–91 (2000).

    CAS  Article  Google Scholar 

  • 44.

    Chan, K., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 46, 437–444 (2008).

    Article  Google Scholar 

  • 45.

    Khan, N. et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Adv. Agron. 138, 1–96 (2016).

    Article  Google Scholar 

  • 46.

    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept and review. Soil Biol. Biochem. 83, 184–199 (2015).

    CAS  Article  Google Scholar 

  • 47.

    Ma, J., Cai, H., He, C., Zhang, W. & Wang, L. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol. 206, 1063–1074 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Wang, Y., Stass, A. & Horst, W. J. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol. 136, 3762–3770 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Wang, P., Lombi, E., Zhao, F.-J. & Kopittke, P. M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 21, 699–712 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Garvie, L. A. & Buseck, P. R. Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature 396, 667–670 (1998).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Goya, G. F., Berquó, T. S., Fonseca, F. C. & Morales, M. P. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Yao, C. et al. Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere 25, 703–712 (2015).

    CAS  Article  Google Scholar 

  • 53.

    Rawal, A. et al. Mineral-biochar composites: Molecular structure and porosity. Environ. Sci. Technol. 50, 7706–7714 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 54.

    Mitchell, D. R. Contamination mitigation strategies for scanning transmission electron microscopy. Micron 73, 36–46 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy