Living Planet Report 2020: Bending the Curve on Biodiversity Loss (WWF, 2020).
Routledge Handbook of Agricultural Biodiversity (Routledge, 2017).
Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).
Google Scholar
Jarvis, D. I. et al. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc. Natl Acad. Sci. USA 105, 5326–5331 (2008).
Google Scholar
The State of the World’s Biodiversity for Food and Agriculture (FAO Commission on Genetic Resources for Food and Agriculture, 2019); https://doi.org/10.4060/ca3129en
Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
Google Scholar
Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
Google Scholar
Lachat, C. et al. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl Acad. Sci. USA 115, 127–132 (2018).
Google Scholar
Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).
Google Scholar
Altieri, M. A. & Nicholls, C. I. Biodiversity and Pest Management in Agroecosystems (Food Products, 2004).
McDaniel, M. D., Tiemann, L. K. & Grandy, A. S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).
Google Scholar
Beillouin, D., Ben-Ari, T. & Makowski, D. Evidence map of crop diversification strategies at the global scale. Environ. Res. Lett. 4, 123001 (2019).
Google Scholar
Stomph, T. J. et al. Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? Adv. Agron. 160, 1–50 (2020).
Google Scholar
Raseduzzaman, M. & Jensen, E. S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 91, 25–33 (2017).
Google Scholar
Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).
Google Scholar
International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010 version 1.1. Harvard Dataverse v.3 (Harvard Dataverse, 2019).
You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).
Google Scholar
Tedesco, P. A. et al. Data Descriptor: a global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).
Google Scholar
Sibhatu, K. T., Krishna, V. V. & Qaim, M. Production diversity and dietary diversity in smallholder farm households. Proc. Natl Acad. Sci. USA 2015, 201510982 (2015).
Allen, T., Prosperi, P., Cogill, B. & Flichman, G. Agricultural biodiversity, social–ecological systems and sustainable diets. Proc. Nutr. Soc. 73, 498–508 (2014).
Google Scholar
Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).
Google Scholar
Dwivedi, S. L. et al. Diversifying food systems in the pursuit of sustainable food production and healthy diets. Trends Plant Sci. 22, 842–856 (2017).
Google Scholar
Frison, E. A. et al. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3, 238–253 (2011).
Google Scholar
Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).
Google Scholar
Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Commission, Publications Office of the European Union, 2016); https://doi.org/10.2788/799182
Kremen, C., Iles, A. & Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).
Khoury, C. K. et al. Comprehensiveness of conservation of useful wild plants: an operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 98, 420–429 (2019).
Google Scholar
Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).
Google Scholar
A Global Database for the Distributions of Crop Wild Relatives v.1.12 (Centro Internacional de Agricultura Tropical, 2018); https://doi.org/10.15468/jyrthk
Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (Univ. of Illinois Press, 1949).
Milla, R. Crop Origins and Phylo Food: a database and a phylogenetic tree to stimulate comparative analyses on the origins of food crops. Glob. Ecol. Biogeogr. 29, 606–614 (2020).
Google Scholar
Hoelzel, A. R., Bruford, M. W. & Fleischer, R. C. Conservation of adaptive potential and functional diversity. Conserv. Genet. 20, 1–5 (2019).
Google Scholar
Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).
Google Scholar
Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2020).
Shackelford, G. et al. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol. Rev. 88, 1002–1021 (2013).
Google Scholar
Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).
Google Scholar
Rader, R. et al. Organic farming and heterogeneous landscapes positively affect different measures of plant diversity. J. Appl. Ecol. 51, 1544–1553 (2014).
Google Scholar
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L. & Grace, P. Conservation agriculture and ecosystem services: an overview. Agric. Ecosyst. Environ. 187, 87–105 (2014).
Google Scholar
Altieri, M. A. & Nicholls, C. I. Agroecology and the emergence of a post COVID-19 agriculture. Agric. Human Values 37, 525–526 (2020).
Google Scholar
Gemmill-Herren, B. Closing the circle: an agroecological response to COVID-19. Agric. Human Values 37, 613–614 (2020).
Google Scholar
Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).
Google Scholar
Swaminathan, M. S. in In Search of Biohappiness: Biodiversity and Food, Health and Livelihood Security (eds Sardar, D. & Yun, A.) Ch. 9 (World Scientific, 2015).
Brown, C., Alexander, P., Arneth, A., Holman, I. & Rounsevell, M. Achievement of Paris climate goals unlikely due to time lags in the land system. Nat. Clim. Change 9, 203–208 (2019).
Google Scholar
Love, B. & Spaner, D. Agrobiodiversity: its value, measurement, and conservation in the context of sustainable agriculture. J. Sustain. Agric. 31, 53–82 (2007).
Google Scholar
Zimmerer, K. S. et al. The biodiversity of food and agriculture (agrobiodiversity) in the Anthropocene: research advances and conceptual framework. Anthropocene 25, 100192 (2019).
Google Scholar
Béné, C. et al. Global map and indicators of food system sustainability. Sci. Data 6, 279 (2019).
Google Scholar
Béné, C. et al. Global drivers of food system (un)sustainability: a multi-country correlation analysis. PLoS ONE 15, e0231071 (2020).
Google Scholar
Hickey, G. M., Pouliot, M., Smith-Hall, C., Wunder, S. & Nielsen, M. R. Quantifying the economic contribution of wild food harvests to rural livelihoods: a global-comparative analysis. Food Policy 62, 122–132 (2016).
Google Scholar
Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index (Bioversity International, 2017).
The Agrobiodiversity Index Methodology Report Version 1.0 (Bioversity International, 2018).
Guidelines for the Preparation of the Country Reports for the State of the World’s Biodiversity for Food and Agriculture (SOWBFA) (FAO, 2013); https://doi.org/10.5812/jjm.34804
Juventia, S. D. et al. Text mining national commitments towards agrobiodiversity conservation and use. Sustainability 12, 715 (2020).
Google Scholar
Singh, R. K., Murty, H. R., Gupta, S. K. & Dikshit, A. K. An overview of sustainability assessment methodologies. Ecol. Indic. 9, 189–212 (2009).
Google Scholar
Gan, X. et al. When to use what: methods for weighting and aggregating sustainability indicators. Ecol. Indic. 81, 491–502 (2017).
Google Scholar
Gómez-Limón, J. A. & Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 69, 1062–1075 (2010).
Google Scholar
Nardo, M., Saisana, M., Saltelli, A. & Tarantola, S. Tools for Composite Indicators Building (Joint Research Centre of the European Commission, 2005).
Wilson, M. C. & Wu, J. The problems of weak sustainability and associated indicators. Int. J. Sustain. Dev. World Ecol. 24, 44–51 (2017).
Google Scholar
Blaser, W. J. et al. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat. Sustain. 1, 234–239 (2018).
Google Scholar
Standard Country or Area Codes for Statistical Use (M49) (United Nations Statistics Division, 2012); https://unstats.un.org/unsd/methodology/m49/
De Mendiburu, F. Una Herramienta de Analisis Estadistico para la Investigacion Agricola (Universidad Nacional de Ingenieria (UNI-PERU), 2009).
Dinno, A. dunn.test: Dunn’s test of multiple comparisons using rank sums. R package v.1.3.4 (CRAN, 2017).
Warner, R. M. Applied Statistics: From Bivariate Through Multivariate Techniques (SAGE, 2008).
R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2018); https://www.r-project.org/
Jones, S. K. et al. Agrobiodiversity Index Scores for 80+ Countries (Harvard Dataverse, 2020); https://doi.org/10.7910/DVN/SKZSQD
Kennedy, G. et al. in Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index (ed Bailey, A.) 23–52 (Bioversity International, 2017).
Minimum Dietary Diversity for Women: A Guide for Measurement (FAO, FHI, 2016).
Ojiewo, C., Tenkouano, C., Hughes, J. & Keatinge, J. D. H. in Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health (eds Fanzo, J. et al.) 291–302 (Routledge, 2013).
Snyder, L. D., Gómez, M. I. & Power, A. G. Crop varietal mixtures as a strategy to support insect pest control, yield, economic, and nutritional services. Front. Sustain. Food Syst. 4, 60 (2020).
Google Scholar
Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. R. Soc. B 286, 20191189 (2019).
Google Scholar
Wang, L. et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl Acad. Sci. USA 116, 6187–6192 (2019).
Google Scholar
Khumairoh, U., Lantinga, E. A., Schulte, R. P. O., Suprayogo, D. & Groot, J. C. J. Complex rice systems to improve rice yield and yield stability in the face of variable weather conditions. Sci. Rep. 8, 14746 (2018).
Google Scholar
Lavorel, S. Plant functional effects on ecosystem services. J. Ecol. 101, 4–8 (2013).
Google Scholar
Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).
Google Scholar
Martin, A. R. & Isaac, M. E. Functional traits in agroecology: advancing description and prediction in agroecosystems. J. Appl. Ecol. 55, 5–11 (2018).
Google Scholar
Stark, J. C. & Thornton, M. in Potato Production Systems (eds Stark, J. et al.) 87–100 (Springer International, 2020).
Taylor, M., Jaenicke, H., Hunter, D., McGregor, A. & Lyon, G. Diversity for sustaining livelihoods: examples, constraints and lessons learnt. Acta Hortic. 1101, 105–112 (2015).
Google Scholar
Mulumba, J. W. et al. A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric. Ecosyst. Environ. 157, 70–86 (2012).
Google Scholar
Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2014, e328 (2014).
Google Scholar
Fahrig, L. et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234 (2015).
Google Scholar
Maxted, N., Dulloo, M. E. & Ford Lloyd, B. Enhancing Crop Genepool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement (CABI, 2016).
Li, Y. et al. Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front. Plant Sci. 9, 190 (2018).
Google Scholar
Hunter, D. et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 250, 709–729 (2019).
Google Scholar
Source: Ecology - nature.com