in

Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems

  • 1.

    Living Planet Report 2020: Bending the Curve on Biodiversity Loss (WWF, 2020).

  • 2.

    Routledge Handbook of Agricultural Biodiversity (Routledge, 2017).

  • 3.

    Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).

    Article 

    Google Scholar 

  • 4.

    Jarvis, D. I. et al. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc. Natl Acad. Sci. USA 105, 5326–5331 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    The State of the World’s Biodiversity for Food and Agriculture (FAO Commission on Genetic Resources for Food and Agriculture, 2019); https://doi.org/10.4060/ca3129en

  • 6.

    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Lachat, C. et al. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl Acad. Sci. USA 115, 127–132 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

    Article 

    Google Scholar 

  • 10.

    Altieri, M. A. & Nicholls, C. I. Biodiversity and Pest Management in Agroecosystems (Food Products, 2004).

  • 11.

    McDaniel, M. D., Tiemann, L. K. & Grandy, A. S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Beillouin, D., Ben-Ari, T. & Makowski, D. Evidence map of crop diversification strategies at the global scale. Environ. Res. Lett. 4, 123001 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Stomph, T. J. et al. Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? Adv. Agron. 160, 1–50 (2020).

    Article 

    Google Scholar 

  • 14.

    Raseduzzaman, M. & Jensen, E. S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 91, 25–33 (2017).

    Article 

    Google Scholar 

  • 15.

    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010 version 1.1. Harvard Dataverse v.3 (Harvard Dataverse, 2019).

  • 17.

    You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).

    Article 

    Google Scholar 

  • 18.

    Tedesco, P. A. et al. Data Descriptor: a global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Sibhatu, K. T., Krishna, V. V. & Qaim, M. Production diversity and dietary diversity in smallholder farm households. Proc. Natl Acad. Sci. USA 2015, 201510982 (2015).

    Google Scholar 

  • 20.

    Allen, T., Prosperi, P., Cogill, B. & Flichman, G. Agricultural biodiversity, social–ecological systems and sustainable diets. Proc. Nutr. Soc. 73, 498–508 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Dwivedi, S. L. et al. Diversifying food systems in the pursuit of sustainable food production and healthy diets. Trends Plant Sci. 22, 842–856 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Frison, E. A. et al. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3, 238–253 (2011).

    Article 

    Google Scholar 

  • 24.

    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Commission, Publications Office of the European Union, 2016); https://doi.org/10.2788/799182

  • 26.

    Kremen, C., Iles, A. & Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).

    Google Scholar 

  • 27.

    Khoury, C. K. et al. Comprehensiveness of conservation of useful wild plants: an operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 98, 420–429 (2019).

    Article 

    Google Scholar 

  • 28.

    Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    A Global Database for the Distributions of Crop Wild Relatives v.1.12 (Centro Internacional de Agricultura Tropical, 2018); https://doi.org/10.15468/jyrthk

  • 30.

    Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (Univ. of Illinois Press, 1949).

  • 31.

    Milla, R. Crop Origins and Phylo Food: a database and a phylogenetic tree to stimulate comparative analyses on the origins of food crops. Glob. Ecol. Biogeogr. 29, 606–614 (2020).

    Article 

    Google Scholar 

  • 32.

    Hoelzel, A. R., Bruford, M. W. & Fleischer, R. C. Conservation of adaptive potential and functional diversity. Conserv. Genet. 20, 1–5 (2019).

    Article 

    Google Scholar 

  • 33.

    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773 (2020).

    Google Scholar 

  • 35.

    Shackelford, G. et al. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol. Rev. 88, 1002–1021 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Rader, R. et al. Organic farming and heterogeneous landscapes positively affect different measures of plant diversity. J. Appl. Ecol. 51, 1544–1553 (2014).

    Article 

    Google Scholar 

  • 38.

    Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L. & Grace, P. Conservation agriculture and ecosystem services: an overview. Agric. Ecosyst. Environ. 187, 87–105 (2014).

    Article 

    Google Scholar 

  • 39.

    Altieri, M. A. & Nicholls, C. I. Agroecology and the emergence of a post COVID-19 agriculture. Agric. Human Values 37, 525–526 (2020).

    Article 

    Google Scholar 

  • 40.

    Gemmill-Herren, B. Closing the circle: an agroecological response to COVID-19. Agric. Human Values 37, 613–614 (2020).

    Article 

    Google Scholar 

  • 41.

    Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 42.

    Swaminathan, M. S. in In Search of Biohappiness: Biodiversity and Food, Health and Livelihood Security (eds Sardar, D. & Yun, A.) Ch. 9 (World Scientific, 2015).

  • 43.

    Brown, C., Alexander, P., Arneth, A., Holman, I. & Rounsevell, M. Achievement of Paris climate goals unlikely due to time lags in the land system. Nat. Clim. Change 9, 203–208 (2019).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Love, B. & Spaner, D. Agrobiodiversity: its value, measurement, and conservation in the context of sustainable agriculture. J. Sustain. Agric. 31, 53–82 (2007).

    Article 

    Google Scholar 

  • 45.

    Zimmerer, K. S. et al. The biodiversity of food and agriculture (agrobiodiversity) in the Anthropocene: research advances and conceptual framework. Anthropocene 25, 100192 (2019).

    Article 

    Google Scholar 

  • 46.

    Béné, C. et al. Global map and indicators of food system sustainability. Sci. Data 6, 279 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Béné, C. et al. Global drivers of food system (un)sustainability: a multi-country correlation analysis. PLoS ONE 15, e0231071 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Hickey, G. M., Pouliot, M., Smith-Hall, C., Wunder, S. & Nielsen, M. R. Quantifying the economic contribution of wild food harvests to rural livelihoods: a global-comparative analysis. Food Policy 62, 122–132 (2016).

    Article 

    Google Scholar 

  • 49.

    Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index (Bioversity International, 2017).

  • 50.

    The Agrobiodiversity Index Methodology Report Version 1.0 (Bioversity International, 2018).

  • 51.

    Guidelines for the Preparation of the Country Reports for the State of the World’s Biodiversity for Food and Agriculture (SOWBFA) (FAO, 2013); https://doi.org/10.5812/jjm.34804

  • 52.

    Juventia, S. D. et al. Text mining national commitments towards agrobiodiversity conservation and use. Sustainability 12, 715 (2020).

    Article 

    Google Scholar 

  • 53.

    Singh, R. K., Murty, H. R., Gupta, S. K. & Dikshit, A. K. An overview of sustainability assessment methodologies. Ecol. Indic. 9, 189–212 (2009).

    Article 

    Google Scholar 

  • 54.

    Gan, X. et al. When to use what: methods for weighting and aggregating sustainability indicators. Ecol. Indic. 81, 491–502 (2017).

    Article 

    Google Scholar 

  • 55.

    Gómez-Limón, J. A. & Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 69, 1062–1075 (2010).

    Article 

    Google Scholar 

  • 56.

    Nardo, M., Saisana, M., Saltelli, A. & Tarantola, S. Tools for Composite Indicators Building (Joint Research Centre of the European Commission, 2005).

  • 57.

    Wilson, M. C. & Wu, J. The problems of weak sustainability and associated indicators. Int. J. Sustain. Dev. World Ecol. 24, 44–51 (2017).

    Article 

    Google Scholar 

  • 58.

    Blaser, W. J. et al. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat. Sustain. 1, 234–239 (2018).

    Article 

    Google Scholar 

  • 59.

    Standard Country or Area Codes for Statistical Use (M49) (United Nations Statistics Division, 2012); https://unstats.un.org/unsd/methodology/m49/

  • 60.

    De Mendiburu, F. Una Herramienta de Analisis Estadistico para la Investigacion Agricola (Universidad Nacional de Ingenieria (UNI-PERU), 2009).

  • 61.

    Dinno, A. dunn.test: Dunn’s test of multiple comparisons using rank sums. R package v.1.3.4 (CRAN, 2017).

  • 62.

    Warner, R. M. Applied Statistics: From Bivariate Through Multivariate Techniques (SAGE, 2008).

  • 63.

    R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2018); https://www.r-project.org/

  • 64.

    Jones, S. K. et al. Agrobiodiversity Index Scores for 80+ Countries (Harvard Dataverse, 2020); https://doi.org/10.7910/DVN/SKZSQD

  • 65.

    Kennedy, G. et al. in Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index (ed Bailey, A.) 23–52 (Bioversity International, 2017).

  • 66.

    Minimum Dietary Diversity for Women: A Guide for Measurement (FAO, FHI, 2016).

  • 67.

    Ojiewo, C., Tenkouano, C., Hughes, J. & Keatinge, J. D. H. in Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health (eds Fanzo, J. et al.) 291–302 (Routledge, 2013).

  • 68.

    Snyder, L. D., Gómez, M. I. & Power, A. G. Crop varietal mixtures as a strategy to support insect pest control, yield, economic, and nutritional services. Front. Sustain. Food Syst. 4, 60 (2020).

    Article 

    Google Scholar 

  • 69.

    Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. R. Soc. B 286, 20191189 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Wang, L. et al. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc. Natl Acad. Sci. USA 116, 6187–6192 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Khumairoh, U., Lantinga, E. A., Schulte, R. P. O., Suprayogo, D. & Groot, J. C. J. Complex rice systems to improve rice yield and yield stability in the face of variable weather conditions. Sci. Rep. 8, 14746 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Lavorel, S. Plant functional effects on ecosystem services. J. Ecol. 101, 4–8 (2013).

    Article 

    Google Scholar 

  • 73.

    Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Martin, A. R. & Isaac, M. E. Functional traits in agroecology: advancing description and prediction in agroecosystems. J. Appl. Ecol. 55, 5–11 (2018).

    Article 

    Google Scholar 

  • 75.

    Stark, J. C. & Thornton, M. in Potato Production Systems (eds Stark, J. et al.) 87–100 (Springer International, 2020).

  • 76.

    Taylor, M., Jaenicke, H., Hunter, D., McGregor, A. & Lyon, G. Diversity for sustaining livelihoods: examples, constraints and lessons learnt. Acta Hortic. 1101, 105–112 (2015).

    Article 

    Google Scholar 

  • 77.

    Mulumba, J. W. et al. A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric. Ecosyst. Environ. 157, 70–86 (2012).

    Article 

    Google Scholar 

  • 78.

    Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2014, e328 (2014).

    Article 

    Google Scholar 

  • 79.

    Fahrig, L. et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234 (2015).

    Article 

    Google Scholar 

  • 80.

    Maxted, N., Dulloo, M. E. & Ford Lloyd, B. Enhancing Crop Genepool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement (CABI, 2016).

  • 81.

    Li, Y. et al. Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front. Plant Sci. 9, 190 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Hunter, D. et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 250, 709–729 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Proteomic traits vary across taxa in a coastal Antarctic phytoplankton bloom

    Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms