in

Air temperature drives the evolution of mid-infrared optical properties of butterfly wings

  • 1.

    Kinoshita, S., Structural Colors in the Realm of Nature (World Scientific, 2008).

  • 2.

    Sun, J., Bhushan, B. & Tong, J. Structural coloration in nature. RSC Adv. 3, 14862–14889 (2013).

    CAS 
    ADS 

    Google Scholar 

  • 3.

    Whitney, H. M. et al. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323, 130–133 (2009).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 4.

    Whitney, H. M., Kolle, M., Alvarez-Fernandez, R., Steiner, U. & Glover, B. J. Contributions of iridescence to floral patterning. Commun. Integr. Biol. 2, 230–232 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Moyroud, E. et al. Disorder in convergent floral nanostructures enhances signalling to bees. Nature 550, 469–474 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 6.

    Mason, C. W. Structural colors in feathers. II. J. Phys. Chem. 27, 401–448 (2005).

    Google Scholar 

  • 7.

    Mason, C. W. Structural colors in insects. III. J. Phys. Chem. 31, 1856–1872 (2005).

    Google Scholar 

  • 8.

    Roberts, N. W., Marshall, N. J. & Cronin, T. W. High levels of reflectivity and pointillist structural color in fish, cephalopods, and beetles. Proc. Natl. Acad. Sci. 109, E3387–E3387 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 9.

    Zi, J. et al. Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. 100, 12576–12578 (2003).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 10.

    McCoy, D. E., Feo, T., Harvey, T. A. & Prum, R. O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1–8 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 11.

    Teyssier, J., Saenko, S. V., Van Der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 1–7 (2015).

    Google Scholar 

  • 12.

    Cooper, K. M., Hanlon, R. T. & Budelmann, B. U. Physiological color change in squid iridophores. Cell Tissue Res. 259, 15–24 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Glover, B. J. & Whitney, H. M. Structural colour and iridescence in plants: The poorly studied relations of pigment colour. Ann. Bot. 105, 505–511 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Shi, N. N. et al. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 15.

    Preciado, J. A. et al. Radiative properties of polar bear hair. Am. Soc. Mech. Eng. Bioeng. Div. 54, 57–58 (2002).

    Google Scholar 

  • 16.

    Bosi, S. G., Hayes, J., Large, M. C. J. & Poladian, L. Color, iridescence, and thermoregulation in Lepidoptera. Appl. Opt. 47, 5235–5241 (2008).

    PubMed 
    ADS 

    Google Scholar 

  • 17.

    Kinoshita, S., Yoshioka, S., Fujii, Y. & Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma-Tokyo 17, 103–121 (2002).

    Google Scholar 

  • 18.

    Tabata, H., Kumazawa, K., Funakawa, M., Takimoto, J. I. & Akimoto, M. Microstructures and optical properties of scales of butterfly wings. Opt. Rev. 3, 139–145 (1996).

    Google Scholar 

  • 19.

    Krishna, A. et al. Infrared optical and thermal properties of microstructures in butterfly wings. Proc. Natl. Acad. Sci. USA 117, 1566–1572 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 20.

    Tsai, C. C. et al. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 1–14 (2020).

    ADS 

    Google Scholar 

  • 21.

    Wilts, B. D., Vey, A. J. M., Briscoe, A. D. & Stavenga, D. G. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evol. Biol. 17, 1–12 (2017).

    Google Scholar 

  • 22.

    Berthier, S. Thermoregulation and spectral selectivity of the tropical butterfly Prepona meander: A remarkable example of temperature auto-regulation. Appl. Phys. A Mater. Sci. Process. 80, 1397–1400 (2005).

    CAS 
    ADS 

    Google Scholar 

  • 23.

    Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 24.

    Siddique, R. H., Diewald, S., Leuthold, J. & Hölscher, H. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies. Opt. Express 21, 14351–14361 (2013).

    PubMed 
    ADS 

    Google Scholar 

  • 25.

    Steindorfer, M. A., Schmidt, V., Belegratis, M., Stadlober, B. & Krenn, J. R. Detailed simulation of structural color generation inspired by the Morpho butterfly. Opt. Express 20, 21485–21494 (2012).

    PubMed 
    ADS 

    Google Scholar 

  • 26.

    Munro, J. T. et al. Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies. Proc. R. Soc. B Biol. Sci. 286, 20190234 (2019).

    Google Scholar 

  • 27.

    Incropera, F. P., DeWitt, D. P., Bergman, T. L. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (Wiley, 2006).

  • 28.

    DeWitt, D. P., Incropera, F. P. “Physics of thermal radiation” in Theory and Practice of Radiation Thermometry, (1988), pp. 19–89.

  • 29.

    Howell, J. R., Menguc, M. P., Siegel, R. Thermal Radiation Heat Transfer (CRC Press, 2016).

  • 30.

    Lord, S. D. A new software tool for computing earth’s atmospheric transmission of near- and far-infrared radiation. NASA Tech. Memo. 103957 (1992).

  • 31.

    Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 32.

    Krishna, A. & Lee, J. Morphology-driven emissivity of microscale tree-like structures for radiative thermal management. Nanoscale Microscale Thermophys. Eng. 22, 124–136 (2018).

    CAS 
    ADS 

    Google Scholar 

  • 33.

    Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 34.

    Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 623, 1–15 (2019).

    Google Scholar 

  • 35.

    Xu, C., Stiubianu, G. T. & Gorodetsky, A. A. Adaptive infrared-reflecting systems inspired by cephalopods. Science 359, 1495–1500 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 36.

    Xie, D. et al. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles: Goliathus goliatus. Soft Matter 15, 4294–4300 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 37.

    Heinrich, B. Thermoregulation in endothermic insects. Science 185, 747–756 (1974).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 38.

    Kingsolver, J. G. Thermoregulation and flight in Colias butterflies: elevational patterns and mechanistic limitations. Ecology 64, 534–545 (1983).

    Google Scholar 

  • 39.

    Rawlins, J. E. Thermoregulation by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). Ecology 61, 345–357 (1980).

    Google Scholar 

  • 40.

    Clench, H. K. Behavioral thermoregulation in butterflies. Ecology 47, 1021–1034 (1966).

    Google Scholar 

  • 41.

    Bonebrake, T. C., Boggs, C. L., Stamberger, J. A., Deutsch, C. A. & Ehrlich, P. R. From global change to a butterfly flapping: Biophysics and behaviour affect tropical climate change impacts. Proc. R. Soc. B Biol. Sci. 281, 20141264 (2014).

    Google Scholar 

  • 42.

    Nève, G. & Hall, C. Variation of thorax flight temperature among twenty Australian butterflies (Lepidoptera: Papilionidae, Nymphalidae, Pieridae, Hesperiidae, Lycaenidae). Eur. J. Entomol. 113, 571–578 (2016).

    Google Scholar 

  • 43.

    MacLean, H. J., Higgins, J. K., Buckley, L. B. & Kingsolver, J. G. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies. Conserv. Physiol. 4, 1 (2016).

    Google Scholar 

  • 44.

    Tsai, C. C., et al., Butterflies regulate wing temperatures using radiative cooling in 2017 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2017), p. 9.

  • 45.

    Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y. & Matsui, S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn. J. Appl. Phys. 44, L48–L50 (2005).

    CAS 
    ADS 

    Google Scholar 

  • 46.

    Wilts, B. D., Giraldo, M. A. & Stavenga, D. G. Unique wing scale photonics of male Rajah Brooke’s birdwing butterflies. Front. Zool. 13, 1–12 (2016).

    Google Scholar 

  • 47.

    De Keyser, R., Breuker, C. J., Hails, R. S., Dennis, R. L. H. & Shreeve, T. G. Why small is beautiful: Wing colour is free from thermoregulatory constraint in the small lycaenid butterfly, Polyommatus icarus. PLoS One 10, e0122663 (2015).

    Google Scholar 

  • 48.

    Biró, L. P. et al., Role of photonic-crystal-type structures in the thermal regulation of a lycaenid butterfly sister species pair. Phys. Rev. E Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 67, 7 (2003).

  • 49.

    Sala-Casanovas, M., Krishna, A., Yu, Z. & Lee, J. Bio-inspired stretchable selective emitters based on corrugated nickel for personal thermal management. Nanoscale Microscale Thermophys. Eng. 23, 173–187 (2019).

    CAS 
    ADS 

    Google Scholar 

  • 50.

    Phan, L. et al. Reconfigurable infrared camouflage coatings from a cephalopod protein. Adv. Mater. 25, 5621–5625 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Pris, A. D. et al. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nat. Photonics 6, 564–564 (2012).

    CAS 
    ADS 

    Google Scholar 

  • 52.

    Krishna, A. et al. Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene. Nano Lett. 19, 5086–5092 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 53.

    Moharam, M. G. & Gaylord, T. K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811 (1981).

    ADS 

    Google Scholar 

  • 54.

    Moharam, M. G. Coupled-wave analysis of two-dimensional dielectric gratings in Holographic Optics: Design and Applications, (1988), p. 8.

  • 55.

    Peng, S. & Morris, G. M. Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings. J. Opt. Soc. Am. A 12, 1087 (1995).

    ADS 

    Google Scholar 

  • 56.

    Moharam, M. G., Gaylord, T. K., Grann, E. B. & Pommet, D. A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 1068 (1995).

    ADS 

    Google Scholar 

  • 57.

    Taflove, A., Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

  • 58.

    Fang, J. et al. Enhanced photocatalytic hydrogen production on three-dimensional gold butterfly wing scales/CdS nanoparticles. Appl. Surf. Sci. 427, 807–812 (2018).

    CAS 
    ADS 

    Google Scholar 

  • 59.

    Wilts, B. D., Leertouwer, H. L. & Stavenga, D. G. Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers. J. R. Soc. Interface 6, S185–S192 (2009).

    PubMed 

    Google Scholar 

  • 60.

    Aideo, S. N., Mohanta, D. Investigation of manifestation of optical properties of butterfly wings with nanoscale zinc oxide incorporation. J. Phys: Confer. Ser. 765, 012019 (2016).

  • 61.

    Guan, Y. et al. Ordering of hollow Ag-Au nanospheres with butterfly wings as a biotemplate. Sci. Rep. 8, 1–7 (2018).

    Google Scholar 

  • 62.

    Simonsen, T. J. et al. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27, 113–137 (2011).

    PubMed 

    Google Scholar 

  • 63.

    Wilts, B. D., Pirih, P., Arikawa, K. & Stavenga, D. G. Shiny wing scales cause spec(tac)ular camouflage of the angled sunbeam butterfly, Curetis acuta. Biol. J. Linn. Soc. 109, 279–289 (2013).

    Google Scholar 

  • 64.

    Wu, L., Han, Z., Qiu, Z., Guan, H. & Ren, L. The microstructures of butterfly wing scales in northeast of China. J. Bionic Eng. 4, 47–52 (2007).

    CAS 

    Google Scholar 

  • 65.

    Azofeifa, D. E., Arguedas, H. J. & Vargas, W. E. Optical properties of chitin and chitosan biopolymers with application to structural color analysis. Opt. Mater. (Amst) 35, 175–183 (2012).

    CAS 
    ADS 

    Google Scholar 

  • 66.

    Vargas, W. E., Azofeifa, D. E. & Arguedas, H. J. Índices de refracción de la quitina, el quitosano y el ácido úrico con aplicación en análisis de color estructural. Opt. Pura y Apl. 46, 55–72 (2013).

    Google Scholar 

  • 67.

    Herman, A., Vandenbem, C., Deparis, O., Simonis, P. & Vigneron, J. P. Nanoarchitecture in the black wings of Troides magellanus : A natural case of absorption enhancement in photonic materials. Nanophotonic Mater. VIII 8094, 80940H (2011).

    Google Scholar 

  • 68.

    Yoshioka, S. & Kinoshita, S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proc. Biol. Sci. 271, 581–587 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Catalanotti, S. et al. The radiative cooling of selective surfaces. Sol. Energy 17, 83–89 (1975).

    ADS 

    Google Scholar 

  • 70.

    Long Kou, J., Jurado, Z., Chen, Z., Fan, S. & Minnich, A. J. Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4, 626–630 (2017).

    Google Scholar 

  • 71.

    Wasserthal, L. T. The role of butterfly wings in regulation of body temperature. J. Insect Physiol. 21, 1921–1930 (1975).

    Google Scholar 

  • 72.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

    ADS 

    Google Scholar 

  • 73.

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Google Scholar 

  • 74.

    Weather Spark Weather Data. https://weatherspark.com (July 10, 2019).

  • 75.

    Weather Underground Historical Weather. https://www.wunderground.com/history/ (August 2, 2018).

  • 76.

    Liu, F. et al. Replication of homologous optical and hydrophobic features by templating wings of butterflies Morpho menelaus. Opt. Commun. 284, 2376–2381 (2011).

    CAS 
    ADS 

    Google Scholar 

  • 77.

    Chen, T., Cong, Q., Qi, Y., Jin, J. & Choy, K. L. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces. PLoS ONE 13, e0188775 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Fang, Y., Sun, G., Wang, T. Q., Cong, Q. & Ren, L. Q. Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing. Chin. Sci. Bull. 52, 711–716 (2007).

    Google Scholar 

  • 79.

    Garland, T., Harvey, P. H. & Ives, A. R. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32 (1992).

    Google Scholar 

  • 80.

    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Google Scholar 

  • 81.

    Felsenstein, J. Phylogenies and quantitative characters. Annu. Rev. Ecol. Syst. 19, 445–471 (1988).

    Google Scholar 

  • 82.

    Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778.e5 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 83.

    Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. 2010. Version 2, 73 (2008).

    Google Scholar 

  • 84.

    Cai, W., Shalaev, V. M. Optical Metamaterials, 10th Ed. (Springer, 2010).

  • 85.

    Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 86.

    Chen, Z., Zhu, L., Raman, A. & Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 1–5 (2016).

    Google Scholar 

  • 87.

    Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 88.

    Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 89.

    Quintiere, J. Radiative characteristics of fire fighters’ coat fabrics. Fire Technol. 10, 153–161 (1974).

    CAS 

    Google Scholar 

  • 90.

    Energy Sector Management Assistance Program (ESMAP). Global Solar Atlas 2.1: Technical Report. https://globalsolaratlas.info (World Bank, December 2019).

  • 91.

    Yoshioka, S. & Kinoshita, S. Direct determination of the refractive index of natural multilayer systems. Phys. Rev. E 83, 051917 (2011).

    ADS 

    Google Scholar 

  • 92.

    Leertouwer, H. L., Wilts, B. D. & Stavenga, D. G. Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. Opt. Express 19, 24061–24066 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    The power of economics to explain and shape the world

    Expanding the conversation about sustainability