Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).
McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641–1255641 (2015).
Chapin, F. S. III. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).
Díaz, S., Fargione, J., Chapin, F. S. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).
Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).
Defeo, O. & Castilla, J. C. More than one bag for the world fishery crisis and keys for co-management successes in selected artisanal Latin American shellfisheries. Rev. Fish Biol. Fish. 15, 265–283 (2005).
Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 10244 (2016).
Defeo, O. et al. Co-management in Latin American small-scale shellfisheries: Assessment from long-term case studies. Fish Fish. 17, 176–192 (2016).
Gelcich, S. et al. Fishers’ perceptions on the Chilean coastal TURF system after two decades: Problems, benefits, and emerging needs. Bull. Mar. Sci. 93, 53–67 (2017).
Castilla, J. C., Gelcich, S. & Defeo, O. Successes, lessons, and projections from experience in marine benthic invertebrate artisanal fisheries in Chile. In Fisheries Management (eds McClanahan, T. R. & Castilla, J. C.) 23–42 (Blackwell Publishing Ltd, Hoboken, 2007). https://doi.org/10.1002/9780470996072.ch2.
Gelcich, S. et al. Navigating transformations in governance of Chilean marine coastal resources. Proc. Natl. Acad. Sci. 107, 16794–16799 (2010).
Kéfi, S. et al. Network structure beyond food webs: Mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303 (2015).
Pérez-Matus, A. et al. Temperate rocky subtidal reef community reveals human impacts across the entire food web. Mar. Ecol. Prog. Ser. 567, 1–16 (2017).
Pérez-Matus, A., Carrasco, S. A., Gelcich, S., Fernandez, M. & Wieters, E. A. Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in Central Chile. Ecosphere 8, e01808 (2017).
Gelcich, S. et al. Territorial user rights for fisheries as ancillary instruments for marine coastal conservation in Chile: Gelcich et al. Conserv. Biol. 26, 1005–1015 (2012).
Oyanedel, R., Keim, A., Castilla, J. C. & Gelcich, S. Illegal fishing and territorial user rights in Chile: Illegal fishing. Conserv. Biol. 32, 619–627 (2018).
Donlan, C. J., Wilcox, C., Luque, G. M. & Gelcich, S. Estimating illegal fishing from enforcement officers. Sci. Rep. 10, 12478 (2020).
Andreu-Cazenave, M., Subida, M. D. & Fernandez, M. Exploitation rates of two benthic resources across management regimes in central Chile: Evidence of illegal fishing in artisanal fisheries operating in open access areas. PLoS ONE 12, e0180012 (2017).
Castilla, J. C. Coastal marine communities: Trends and perspectives from human-exclusion experiments. Trends Ecol. Evol. 14, 280–283 (1999).
Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).
Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
Brose, U. et al. Climate change in size-structured ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367, 2903–2912 (2012).
Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).
Kwiatkowski, L., Aumont, O. & Bopp, L. Consistent trophic amplification of marine biomass declines under climate change. Glob. Change Biol. 25, 218–229 (2019).
Bakun, A. Coastal ocean upwelling. Science 247, 198–201 (1990).
Bakun, A., Field, D. B., Redondo-Rodriguez, A. & Weeks, S. J. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob. Change Biol. 16, 1213–1228 (2010).
Thiel, M. et al. The Humboldt current system of northern and central Chile: Oceanographic processes, ecological interactions and socioeconomic feedback. In Oceanography and Marine Biology Vol. 20074975 (eds Gibson, R. et al.) 195–344 (CRC Press, Boca Raton, 2007).
Morales, C., Hormazabal, S., Andrade, I. & Correa-Ramirez, M. Time-space variability of chlorophyll-a and associated physical variables within the region off central-southern Chile. Remote Sens. 5, 5550–5571 (2013).
Aiken, C. M., Navarrete, S. A. & Pelegrí, J. L. Potential changes in larval dispersal and alongshore connectivity on the central Chilean coast due to an altered wind climate. J. Geophys. Res. 116, G04026 (2011).
Blanchard, J. L. et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367, 2979–2989 (2012).
Testa, G., Masotti, I. & Farías, L. Temporal variability in net primary production in an upwelling area off central Chile (36°S). Front. Mar. Sci. 5, 179 (2018).
Batten, S. D. et al. A global plankton diversity monitoring program. Front. Mar. Sci. 6, 321 (2019).
Chust, G. et al. Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Change Biol. 20, 2124–2139 (2014).
Weidberg, N. et al. Spatial shifts in productivity of the coastal ocean over the past two decades induced by migration of the Pacific Anticyclone and Bakun’s effect in the Humboldt Upwelling Ecosystem. Glob. Planet. Change 193, 103259 (2020).
Aguirre, C., García-Loyola, S., Testa, G., Silva, D. & Farias, L. Insight into anthropogenic forcing on coastal upwelling off south-central Chile. Elem. Sci. Anth. 6, 59 (2018).
Valdovinos, F. S. Mutualistic networks: Moving closer to a predictive theory. Ecol. Lett. 22, 1517–1534 (2019).
Pascual, M. & Dunne, J. A. Ecological Networks: Linking Structure to Dynamics in Food Webs (Santa Fe Institute Studies on the Sciences of Complexity) (Oxford University Press, Oxford, 2006).
Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
Curtsdotter, A. et al. Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs. Basic Appl. Ecol. 12, 571–580 (2011).
Ramos-Jiliberto, R., Valdovinos, F. S., Moisset de Espanés, P. & Flores, J. D. Topological plasticity increases robustness of mutualistic networks: Interaction rewiring in mutualistic networks. J. Anim. Ecol. 81, 896–904 (2012).
Valdovinos, F. S., Moisset de Espanés, P., Flores, J. D. & Ramos-Jiliberto, R. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos 122, 907–917 (2013).
Allesina, S. & Pascual, M. Googling food webs: Can an eigenvector measure species’ importance for coextinctions?. PLoS Comput. Biol. 5, e1000494 (2009).
de Santana, C., Rozenfeld, A., Marquet, P. & Duarte, C. Topological properties of polar food webs. Mar. Ecol. Prog. Ser. 474, 15–26 (2013).
Eklöf, A., Tang, S. & Allesina, S. Secondary extinctions in food webs: A Bayesian network approach. Methods Ecol. Evol. 4, 760–770 (2013).
Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs: Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).
Albert, R., Jeong, H. & Barabási, A. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).
Ives, A. R. & Cardinale, B. J. Food–web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).
Rebolledo, R., Navarrete, S. A., Kéfi, S., Rojas, S. & Marquet, P. A. An open-system approach to complex biological networks. SIAM J. Appl. Math. 79, 619–640 (2019).
McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).
Glaum, P., Cocco, V. & Valdovinos, F. S. Integrating economic dynamics into ecological networks: The case of fishery sustainability. Sci. Adv. 6, eaaz4891 (2020).
Williams, R. J. Network 3D: Visualizing and modelling food webs and other complex networks. Microsoft Res. Camb. UK. http://research.microsoft.com/en-us/um/cambridge/groups/science/tools/network3d/network3d.htm (2010).
Richard, J. W., Brose, U. & Martinez, N. D. Homage to Yodzis and Innes 1992: Scaling up feeding-based population dynamics to complex ecological networks. In From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems 37–51 (Springer, Berlin, 2006). https://doi.org/10.1007/978-1-4020-5337-5_2.
Boit, A., Martinez, N. D., Williams, R. J. & Gaedke, U. Mechanistic theory and modelling of complex food-web dynamics in Lake Constance: Mechanistic modelling of complex food web dynamics. Ecol. Lett. 15, 594–602 (2012).
Kuparinen, A., Boit, A., Valdovinos, F. S., Lassaux, H. & Martinez, N. D. Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Sci. Rep. 6, 22245 (2016).
Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
Pauly, D. Fishing down marine food webs. Science 279, 860–863 (1998).
Jordán, F., Okey, T. A., Bauer, B. & Libralato, S. Identifying important species: Linking structure and function in ecological networks. Ecol. Model. 216, 75–80 (2008).
Castilla, J. C. & Fernandez, M. Small-scale benthic fisheries in Chile: On co-management and sustainable use of benthic invertebrates. Ecol. Appl. 8, S124–S132 (1998).
Allesina, S., Bodini, A. & Pascual, M. Functional links and robustness in food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1701–1709 (2009).
de Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: Empirical quantification and analysis of topological changes under increasing human impact: Topological changes under human impact. J. Anim. Ecol. 80, 484–494 (2011).
Srinivasan, U. T., Dunne, J. A., Harte, J. & Martinez, N. D. Response of complex food webs to realistic extinction sequences. Ecology 88, 671–682 (2007).
Camus, P. A., Arancibia, P. A. & Ávila-Thieme, M. I. A trophic characterization of intertidal consumers on Chilean rocky shores. Rev. Biol. Mar. Oceanogr. 48, 431–450 (2013).
Lopez, D. N., Camus, P. A., Valdivia, N. & Estay, S. A. High temporal variability in the occurrence of consumer–resource interactions in ecological networks. Oikos 126, 1699–1707 (2017).
Arim, M. & Marquet, P. A. Intraguild predation: A widespread interaction related to species biology: Intraguild predation. Ecol. Lett. 7, 557–564 (2004).
Teagle, H., Hawkins, S. J., Moore, P. J. & Smale, D. A. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 492, 81–98 (2017).
Vásquez, J. A. The brown seaweeds fishery in Chile. In Fisheries and Aquaculture in the Modern World (ed. Mikkola, H.) (InTech, London, 2016). https://doi.org/10.5772/62876.
Belmadani, A., Echevin, V., Codron, F., Takahashi, K. & Junquas, C. What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?. Clim. Dyn. 43, 1893–1914 (2014).
Wang, Y., Luo, Y., Lu, J. & Liu, F. Changes in ENSO amplitude under climate warming and cooling. Clim. Dyn. 52, 1871–1882 (2019).
Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).
Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).
Fussmann, K. E., Schwarzmüller, F., Brose, U., Jousset, A. & Rall, B. C. Ecological stability in response to warming. Nat. Clim. Change 4, 206–210 (2014).
Hays, G., Richardson, A. & Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 20, 337–344 (2005).
Jochum, M., Schneider, F. D., Crowe, T. P., Brose, U. & O’Gorman, E. J. Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Philos. Trans. R. Soc. B Biol. Sci. 367, 2962–2970 (2012).
Hallegraeff, G. M. A review of harmful algal blooms and their apparent global increase. Phycologia 32, 79–99 (1993).
He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29, R1021–R1035 (2019).
Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Divers. Distrib. 20, 538–546 (2014).
Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
Dunne, J. A. et al. The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Sci. Rep. 6, 21179 (2016).
Hale, K. R. S., Valdovinos, F. S. & Martinez, N. D. Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs. Nat. Commun. 11, 2182 (2020).
Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A. & Berlow, E. L. How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol. 14, e1002527 (2016).
Miele, V., Guill, C., Ramos-Jiliberto, R. & Kéfi, S. Non-trophic interactions strengthen the diversity—Functioning relationship in an ecological bioenergetic network model. PLoS Comput. Biol. 15, e1007269 (2019).
Morgan, S. G., Fisher, J. L., Miller, S. H., McAfee, S. T. & Largier, J. L. Nearshore larval retention in a region of strong upwelling and recruitment limitation. Ecology 90, 3489–3502 (2009).
Ospina-Alvarez, A., Weidberg, N., Aiken, C. M. & Navarrete, S. A. Larval transport in the upwelling ecosystem of central Chile: The effects of vertical migration, developmental time and coastal topography on recruitment. Prog. Oceanogr. 168, 82–99 (2018).
Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).
Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).
Valdovinos, F. S., Ramos-Jiliberto, R., Garay-Narváez, L., Urbani, P. & Dunne, J. A. Consequences of adaptive behaviour for the structure and dynamics of food webs: Adaptive behaviour in food webs. Ecol. Lett. 13, 1546–1559 (2010).
Williams, R. J. Effects of network and dynamical model structure on species persistence in large model food webs. Theor. Ecol. 1, 141–151 (2008).
Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).
Menge, B. A. & Menge, D. N. L. Dynamics of coastal meta-ecosystems: The intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 83, 283–310 (2013).
Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).
Berlow, E. L. et al. Simple prediction of interaction strengths in complex food webs. Proc. Natl. Acad. Sci. 106, 187–191 (2009).
Jonsson, T., Kaartinen, R., Jonsson, M. & Bommarco, R. Predictive power of food web models based on body size decreases with trophic complexity. Ecol. Lett. 21, 702–712 (2018).
Hudson, L. N. & Reuman, D. C. A cure for the plague of parameters: constraining models of complex population dynamics with allometries. Proc. R. Soc. B Biol. Sci. 280, 20131901 (2013).
Ávila-Thieme, M. I., Corcoran, D., Valdovinos, F. S., Navarrete, S. A. & Marquet, P. A. NetworkExtinction: Extinction Simulation in Food Webs. (R package version 0.1.3., 2018).
Schneider, F. D., Brose, U., Rall, B. C. & Guill, C. Animal diversity and ecosystem functioning in dynamic food webs. Nat. Commun. 7, 12718 (2016).
Source: Ecology - nature.com