in

An example of DNA methylation as a means to quantify stress in wildlife using killer whales

  • 1.

    Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 128, 231–240 (2006).

    Article 

    Google Scholar 

  • 3.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, 6471 (2019).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: Reframing the co-occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, 1992–1997 (2019).

    Google Scholar 

  • 5.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Di Prisco, G. et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and Health. Proc. Natl. Acad. Sci. USA. 113, 3203–3208 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Grant, E. H. C. et al. Identifying management-relevant research priorities for responding to disease-associated amphibian declines. Glob. Ecol. Conserv. 16, 00441 (2018).

    Google Scholar 

  • 9.

    Schindler, D. W. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 58, 18–29 (2001).

    Article 

    Google Scholar 

  • 10.

    Cumulative Effects in Wildlife Management: Impact Mitigation. https://doi.org/10.1017/CBO9781107415324.004 (CRC Press, 2011).

  • 11.

    Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).

    Google Scholar 

  • 12.

    Rolland, R. M., Hunt, K. E., Kraus, S. D. & Wasser, S. K. Assessing reproductive status of right whales (Eubalaena glacialis) using fecal hormone metabolites. Gen. Comp. Endocrinol. 142, 308–317 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Beal, A., Rodriguez-Casariego, J., Rivera-Casas, C., Suarez-Ulloa, V. & Eirin-Lopez, J. M. Environmental epigenomics and its applications in marine organisms. in Population Genomics: Marine Organisms (eds. Oleksiak, M. F. & Rajora, O. P.) 325–359. https://doi.org/10.1007/13836_2018_28 (Springer, 2018).

  • 16.

    Eirin-Lopez, J. M. & Putnam, H. M. Marine environmental epigenetics. Ann. Rev. Mar. Sci. 11, 335–368 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Laird, P. W. The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3, 253–266 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Matosin, N., Cruceanu, C. & Binder, E. B. Preclinical and clinical evidence of DNA methylation changes in response to trauma and chronic stress. Chronic Stress 1, 247054701771076 (2017).

    Article 

    Google Scholar 

  • 21.

    Radtke, K. M. et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl. Psychiatry 1, e21–e26 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Mueller, B. R. & Bale, T. L. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A. & Chen, A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci. 13, 1351–1353 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Boersma, G. J. et al. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 9, 437–447 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Turecki, G. & Meaney, M. J. Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biol. Psychiatry 79, 87–96 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Sterrenburg, L. et al. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS ONE 6, 1–14 (2011).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Reeder, D. A. M. & Kramer, K. M. Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. J. Mammal. 86, 225–235 (2005).

    Article 

    Google Scholar 

  • 28.

    Jeanneteau, F. D. et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc. Natl. Acad. Sci. USA. 109, 1305–1310 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Smith, S. M. & Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8, 383–395 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Turner, J. D. & Muller, C. P. Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: Identification, and tissue distribution of multiple new human exon 1. J. Mol. Endocrinol. 35, 283–292 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Bakusic, J., Schaufeli, W., Claes, S. & Godderis, L. Stress, burnout and depression: A systematic review on DNA methylation mechanisms. J. Psychosom. Res. 92, 34–44 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Center for Whale Research. Population. https://www.whaleresearch.com. Accessed 11 Jan 2021 (2020).

  • 33.

    Fisheries and Oceans Canada. Recovery Strategy for the Northern and Southern Resident Killer Whales (Orcinus orca) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series, Fisheries & Oceans Canada, Ottawa, x + 84 pp.(2018).

  • 34.

    DFO. Population Status Update for the Northern Resident Killer Whale (Orcinus orca) in 2018. DFO Can. Sci. Advis. Sec. Sci. Resp. 2019/025. (2019).

  • 35.

    Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B. & Balcomb, K. C. Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Reports Int. Whal. Comm. 12, 383–405 (1990).

    Google Scholar 

  • 36.

    Ford, J. K. B. & Ellis, G. M. Selective foraging by fish-eating killer whales Orcinus orca in British Columbia. Mar. Ecol. Prog. Ser. 316, 185–199 (2006).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Chen, I.-H. et al. Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas). PeerJ 4, e1810 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Hoelzel, A. R., Dahlheim, M. E. & Stern, S. J. Low genetic variation among killer whales (Orcinus orca) in the eastern north Pacific and genetic differentiation between foraging specialists. J. Hered. 89, 121–128 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Yao, M., Stenzel-Poore, M. & Denver, R. J. Structural and functional conservation of vertebrate corticotropin- releasing factor genes: Evidence for a critical role for a conserved cyclic AMP response element. Endocrinology 148, 2518–2531 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Aguiniga, L. M., Yang, W., Yaggie, R. E., Schaeffer, A. J. & Klumpp, D. J. Acyloxyacyl hydrolase modulates depressive-like behaviors through aryl hydrocarbon receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, R289–R300 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Hankinson, O. The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 35, 307–340 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Lundin, J. I. et al. Pre-oil spill baseline profiling for contaminants in Southern Resident killer whale fecal samples indicates possible exposure to vessel exhaust. Mar. Pollut. Bull. 136, 448–453 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    MacDonald, L. H. Evaluating and managing cumulative effects: Process and constraints. Environ. Manag. 26, 299–315 (2000).

    CAS 
    Article 

    Google Scholar 

  • 45.

    National Academies of Sciences Engineering and Medicine. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals. https://doi.org/10.17226/23479 (National Academies Press, 2017).

  • 46.

    Barrett-Lennard, L. G., Smith, T. G. & Ellis, G. M. A cetacean biopsy system using lightweight pneumatic darts, and its effect on the behavior of killer whales. Mar. Mammal Sci. 12, 14–27 (1996).

    Article 

    Google Scholar 

  • 47.

    Sambrook, J., Fritsch, E. F. & Maniatis, H. Molecular Cloning: A Laboratory Manual (Cold Springs Harbor Laboratory Press, 1989).

    Google Scholar 

  • 48.

    Illumina. 16S Metagenomic Sequencing Library Preparation. Illumina.com 1–28 (2013).

  • 49.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.j 17, 10–12 (2011).

    Article 

    Google Scholar 

  • 50.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Correction: Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

    A peculiar state of matter in layers of semiconductors