in

An integrative investigation of sensory organ development and orientation behavior throughout the larval phase of a coral reef fish

  • 1.

    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).

    Book 

    Google Scholar 

  • 2.

    Paris, C. B. & Cowen, R. K. Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnol. Oceanogr. 49, 1964–1979 (2004).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Roberts, C. M. Connectivity and management of Caribbean coral reefs. Science 278, 1454–1457 (1997).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Fisher, R. & Wilson, S. K. Maximum sustainable swimming speeds of late-stage larvae of nine species of reef fishes. J. Exp. Mar. Biol. Ecol. 312, 171–186 (2004).

    Article 

    Google Scholar 

  • 5.

    Fisher, R., Leis, J. M., Clark, D. L. & Wilson, S. K. Critical swimming speeds of late-stage coral reef fish larvae: variation within species, among species and between locations. Mar. Biol. 147, 1201–1212 (2005).

    Article 

    Google Scholar 

  • 6.

    Leis, J. M. Ontogeny of behaviour in larvae of marine demersal fishes. Ichthyol. Res. 57, 325–342 (2010).

    Article 

    Google Scholar 

  • 7.

    Faillettaz, R., Durand, E., Paris, C. B., Koubbi, P. & Irisson, J.-O. Swimming speeds of Mediterranean settlement-stage fish larvae nuance Hjort’s aberrant drift hypothesis. Limnol. Oceanogr. 63, 509–523 (2018).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Majoris, J. E., Catalano, K. A., Scolaro, D., Atema, J. & Buston, P. M. Ontogeny of larval swimming abilities in three species of coral reef fishes and a hypothesis for their impact on the spatial scale of dispersal. Mar. Biol. 166, 159 (2019).

    Article 

    Google Scholar 

  • 9.

    Leis, J. M., Sweatman, H. P. & Reader, S. E. What the pelagic stages of coral reef fishes are doing out in blue water: daytime field observations of larval behavioural capabilities. Mar. Freshw. Res. 47, 401–411 (1996).

    Article 

    Google Scholar 

  • 10.

    Leis, J., Paris, C., Irisson, J., Yerman, M. & Siebeck, U. Orientation of fish larvae in situ is consistent among locations, years and methods, but varies with time of day. Mar. Ecol. Prog. Ser. 505, 193–208 (2014).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Leis, J. M. & Carson-Ewart, B. M. Orientation of pelagic larvae of coral-reef fishes in the ocean. Mar. Ecol. Prog. Ser. 252, 239–253 (2003).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Paris, C. B., Guigand, C. M., Irisson, J.-O., Fisher, R. & D’Alessandro, E. Orientation with no frame of reference (OWNFOR): a novel system to observe and quantify orientation in reef fish larvae. In Caribbean Connectivity: Implications for Marine Protected Area Management 52–62 (2008).

  • 13.

    Rossi, A., Irisson, J.-O., Levaray, M., Pasqualini, V. & Agostini, S. Orientation of Mediterranean fish larvae varies with location. Mar. Biol. 166, 100 (2019).

    Article 

    Google Scholar 

  • 14.

    Simpson, S. D., Meekan, M., Montgomery, J., McCauley, R. & Jeffs, A. Homeward sound. Science 308, 221–221 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Leis, J. M., Siebeck, U. & Dixson, D. L. How nemo finds home: the neuroecology of dispersal and of population connectivity in larvae of marine fishes. Integr. Comp. Biol. 51, 826–843 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Paris, C. B. et al. Reef odor: a wake up call for navigation in reef fish larvae. PLoS ONE 8, e72808 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Mouritsen, H., Atema, J., Kingsford, M. J. & Gerlach, G. Sun compass orientation helps coral reef fish larvae return to their natal reef. PLoS ONE 8, e66039 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Berenshtein, I. et al. Polarized light sensitivity and orientation in coral reef fish post-larvae. PLoS ONE 9, e88468 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Bottesch, M. et al. A magnetic compass that might help coral reef fish larvae return to their natal reef. Curr. Biol. 26, R1266–R1267 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Cresci, A., Allan, B. J. M., Shema, S. D., Skiftesvik, A. B. & Browman, H. I. Orientation behavior and swimming speed of Atlantic herring larvae (Clupea harengus) in situ and in laboratory exposures to rotated artificial magnetic fields. J. Exp. Mar. Biol. Ecol. 526, 151358 (2020).

    Article 

    Google Scholar 

  • 21.

    Faillettaz, R., Paris, C. B. & Irisson, J.-O. Larval fish swimming behavior alters dispersal patterns from marine protected areas in the North-Western Mediterranean Sea. Front. Mar. Sci. 5, 97 (2018).

    Article 

    Google Scholar 

  • 22.

    Staaterman, E., Paris, C. B. & Helgers, J. Orientation behavior in fish larvae: a missing piece to Hjort’s critical period hypothesis. J. Theor. Biol. 304, 188–196 (2012).

    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Lara, M. R. Development of the nasal olfactory organs in the larvae, settlement-stages and some adults of 14 species of Caribbean reef fishes (Labridae, Scaridae, Pomacentridae). Mar. Biol. 154, 51–64 (2008).

    Article 

    Google Scholar 

  • 24.

    Arvedlund, M. & Kavanagh, K. The senses and environmental cues used by marine larvae of fish and decapod crustaceans to find tropical coastal ecosystems. In Ecological Connectivity among Tropical Coastal Ecosystems (ed. Nagelkerken, I.) 135–184 (Springer, 2009).

    Chapter 

    Google Scholar 

  • 25.

    Teodósio, M. A., Paris, C. B., Wolanski, E. & Morais, P. Biophysical processes leading to the ingress of temperate fish larvae into estuarine nursery areas: a review. Estuar. Coast. Shelf Sci. 183, 187–202 (2016).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Hu, Y., Majoris, J. E., Buston, P. M. & Webb, J. F. Potential roles of smell and taste in the orientation behaviour of coral-reef fish larvae: insights from morphology. J. Fish Biol. 95, 311–323 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Nickles, K. R., Hu, Y., Majoris, J. E., Buston, P. M. & Webb, J. F. Organization and ontogeny of a complex lateral line system in a Goby (Elacatinus lori), with a consideration of function and ecology. Copeia 108, 863–885 (2020).

    Article 

    Google Scholar 

  • 28.

    Fuiman, L., Higgs, D. & Poling, K. Changing structure and function of the ear and lateral line system of fishes during development. Am. Fish. Soc. Symp. 2004, 117–144 (2004).

    Google Scholar 

  • 29.

    Blaxter, J. H. S. Light intensity, vision, and feeding in young plaice. J. Exp. Mar. Biol. Ecol. 2, 293–307 (1968).

    Article 

    Google Scholar 

  • 30.

    Blaxter, J. H. S. & Hoss, D. E. The effect of rapid changes of hydrostatic pressure on the Atlantic herring Clupea harengus L. II. The response of the auditory bulla system in larvae and juveniles. J. Exp. Mar. Biol. Ecol. 41, 87–100 (1979).

    Article 

    Google Scholar 

  • 31.

    Colin, P. L. A new species of sponge-dwelling Elacatinus (Pisces: Gobiidae) from the western Caribbean. Zootaxa 106, 1–7 (2002).

    Article 

    Google Scholar 

  • 32.

    Colin, P. L. Fishes as living tracers of connectivity in the tropical western North Atlantic: I. Distribution of the neon gobies, genus Elacatinus (Pisces: Gobiidae). Zootaxa 2370, 36–52 (2010).

    Article 

    Google Scholar 

  • 33.

    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    D’Aloia, C. C., Majoris, J. E. & Buston, P. M. Predictors of the distribution and abundance of a tube sponge and its resident goby. Coral Reefs 30, 777 (2011).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Majoris, J. E., Francisco, F. A., Atema, J. & Buston, P. M. Reproduction, early development, and larval rearing strategies for two sponge-dwelling neon gobies, Elacatinus lori and E. colini. Aquaculture 483, 286–295 (2018).

    Article 

    Google Scholar 

  • 36.

    D’Aloia, C. C. et al. Patterns, causes, and consequences of marine larval dispersal. Proc. Natl. Acad. Sci. 112, 13940–13945 (2015).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 37.

    Majoris, J. E., D’Aloia, C. C., Francis, R. K. & Buston, P. M. Differential persistence favors habitat preferences that determine the distribution of a reef fish. Behav. Ecol. 29, 429–439 (2018).

    Article 

    Google Scholar 

  • 38.

    Chaput, R., Majoris, J. E., Guigand, C. M., Huse, M. & D’Alessandro, E. K. Environmental conditions and paternal care determine hatching synchronicity of coral reef fish larvae. Mar. Biol. 166, 118 (2019).

    Article 
    CAS 

    Google Scholar 

  • 39.

    D’Aloia, C., Xuereb, A., Fortin, M., Bogdanowicz, S. & Buston, P. Limited dispersal explains the spatial distribution of siblings in a reef fish population. Mar. Ecol. Prog. Ser. 607, 143–154 (2018).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Williamson, D. H. et al. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park. Mol. Ecol. 25, 6039–6054 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Almany, G. R. et al. Larval fish dispersal in a coral-reef seascape. Nat. Ecol. Evol. 1, 0148 (2017).

    Article 

    Google Scholar 

  • 42.

    Bode, M. et al. Successful validation of a larval dispersal model using genetic parentage data. PLOS Biol. 17, e3000380 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Nakae, M., Asaoka, R., Wada, H. & Sasaki, K. Fluorescent dye staining of neuromasts in live fishes: an aid to systematic studies. Ichthyol. Res. 59, 286–290 (2012).

    Article 

    Google Scholar 

  • 44.

    Webb, J. F. & Shirey, J. E. Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Dev. Dyn. 228, 370–385 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Becker, E. A., Bird, N. C. & Webb, J. F. Post-embryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes. J. Morphol. 277, 1273–1291 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Webb, J. F. Morphological diversity, development, and evolution of the mechanosensory lateral line system. In The Lateral Line System (eds Coombs, S. et al.) 17–72 (Springer, 2014). https://doi.org/10.1007/2506_2013_12.

    Chapter 

    Google Scholar 

  • 47.

    Asaoka, R., Nakae, M. & Sasaki, K. The innervation and adaptive significance of extensively distributed neuromasts in Glossogobius olivaceus (Perciformes: Gobiidae). Ichthyol. Res. 59, 143–150 (2011).

    Article 

    Google Scholar 

  • 48.

    Asaoka, R., Nakae, M. & Sasaki, K. Innervation of the lateral line system in Rhyacichthys aspro: the origin of superficial neuromast rows in gobioids (Perciformes: Rhyacichthyidae). Ichthyol. Res. 61, 49–58 (2014).

    Article 

    Google Scholar 

  • 49.

    Nickles, K. Ontogeny of the lateral line and visual systems of a Caribbean Reef Goby, Elacatinus lori (University of Rhode Island, 2019).

  • 50.

    Shand, J., Døving, K. B. & Collin, S. P. Optics of the developing fish eye: comparisons of Matthiessen’s ratio and the focal length of the lens in the black bream Acanthopagrus butcheri (Sparidae, Teleostei). Vis. Res. 39, 1071–1078 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Webb, J. F. et al. Development of the ear, hearing capabilities and laterophysic connection in the spotfin butterflyfish (Chaetodon ocellatus). Environ. Biol. Fishes 95, 275–290 (2012).

    Article 

    Google Scholar 

  • 52.

    Popper, A. N. & Hoxter, B. Growth of a fish ear: 1. Quantitative analysis of hair cell and ganglion cell proliferation. Hear. Res. 15, 133–142 (1984).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Bever, M. M. & Fekete, D. M. Atlas of the developing inner ear in zebrafish. Dev. Dyn. 223, 536–543 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Haddon, C. & Lewis, J. Early ear development in the embryo of the Zebrafish, Danio rerio. J. Comp. Neurol. 365, 113–128 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Kawamura, G. et al. Morphogenesis of sense organs in the bluefin tuna Thunnus orientalis. in The Big Fish Bang Proceedings of the 26th Annual Larval Fish Conference (eds Browman, H. & Skiftesvik, A. B.) 123–135 (2003).

    Google Scholar 

  • 56.

    Pankhurst, P. M. & Butler, P. Development of the sensory organs in the greenback flounder, Rhombosolea tapirina. Mar. Freshw. Behav. Physiol. 28, 55–73 (1996).

    Article 

    Google Scholar 

  • 57.

    Lara, M. R. Morphology of the eye and visual acuities in the settlement-intervals of some Coral Reef Fishes (Labridae, Scaridae). Environ. Biol. Fishes 62, 365–378 (2001).

    Article 

    Google Scholar 

  • 58.

    Lara, M. R. Sensory Development in Settlement-Stage Larvae of Caribbean Labrids and Scarids: A Comparative Study with Implications for Ecomorphology and Life History Strategies (College of William and Mary, 1999).

    Google Scholar 

  • 59.

    Lecchini, D., Planes, S. & Galzin, R. Experimental assessment of sensory modalities of coral-reef fish larvae in the recognition of their settlement habitat. Behav. Ecol. Sociobiol. 58, 18–26 (2005).

    Article 

    Google Scholar 

  • 60.

    Dixson, D. L. et al. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish. Oecologia 174, 99–107 (2014).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Irisson, J.-O., Guigand, C. & Paris, C. B. Detection and quantification of marine larvae orientation in the pelagic environment. Limnol. Oceanogr. Methods 7, 664–672 (2009).

    Article 

    Google Scholar 

  • 62.

    Irisson, J.-O., Paris, C. B., Leis, J. M. & Yerman, M. N. With a little help from my friends: group orientation by larvae of a coral reef fish. PLoS ONE 10, e0144060 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 63.

    Faillettaz, R., Blandin, A., Paris, C. B., Koubbi, P. & Irisson, J.-O. Sun-compass orientation in Mediterranean fish larvae. PLoS ONE 10, e0135213 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Lindo-Atichati, D., Curcic, M., Paris, C. B. & Buston, P. M. Description of surface transport in the region of the Belizean Barrier Reef based on observations and alternative high-resolution models. Ocean Model 106, 74–89 (2016).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Agostinelli, C. & Lund, U. R package ‘circular’: Circular Statistics (version 0.4-93). https://r-forge.r-project.org/projects/circular/ (2017).

  • 66.

    R Core Team. R: A language and environment for statistical computing (R Found Stat Comput, 2013).

    Google Scholar 

  • 67.

    Leis, J., Hay, A. & Howarth, G. Ontogeny of in situ behaviours relevant to dispersal and population connectivity in larvae of coral-reef fishes. Mar. Ecol. Prog. Ser. 379, 163–179 (2009).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Leis, J. M. & Carson-Ewart, B. M. (eds) The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae, 2nd edn. (Brill, 2004).

    Google Scholar 

  • 69.

    Kingsford, M. J. et al. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70, 309–340 (2002).

    Google Scholar 

  • 70.

    Cresci, A. et al. Atlantic haddock (Melanogrammus aeglefinus) larvae have a magnetic compass that guides their orientation. iScience 19, 1173–1178 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P. & Miller-Sims, V. Smelling home can prevent dispersal of reef fish larvae. Proc. Natl. Acad. Sci. 104, 858–863 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Dixson, D. L. et al. Coral reef fish smell leaves to find island homes. Proc. R. Soc. B Biol. Sci. 275, 2831–2839 (2008).

    Article 

    Google Scholar 

  • 73.

    Berenshtein, I. et al. Auto-correlated directional swimming can enhance settlement success and connectivity in fish larvae. J. Theor. Biol. 439, 76–85 (2018).

    MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Shaw, A. K., D’Aloia, C. C. & Buston, P. M. The evolution of marine larval dispersal kernels in spatially structured habitats: analytical models, individual-based simulations, and comparisons with empirical estimates. Am. Nat. 193, 424–435 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Gross, M. R. Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol. Evol. 11, 92–98 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Ronce, O. & Clobert, J. Dispersal syndromes. In Dispersal Ecology and Evolution Vol. 55 (eds Clobert, J. et al.) 119–138 (Oxford University Press, Oxford, 2012).

    Chapter 

    Google Scholar 

  • 77.

    Huebert, K. & Sponaugle, S. Observed and simulated swimming trajectories of late-stage coral reef fish larvae off the Florida Keys. Aquat. Biol. 7, 207–216 (2009).

    Article 

    Google Scholar 

  • 78.

    Hamilton, W. D. & May, R. M. Dispersal in stable habitats. Nature 269, 578–581 (1977).

    ADS 
    Article 

    Google Scholar 

  • 79.

    Leis, J. et al. In situ orientation of fish larvae can vary among regions. Mar. Ecol. Prog. Ser. 537, 191–203 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 80.

    Botsford, L. W. et al. Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28, 327–337 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    White, J. W., Botsford, L. W., Hastings, A. & Largier, J. L. Population persistence in marine reserve networks: incorporating spatial heterogeneities in larval dispersal. Mar. Ecol. Prog. Ser. 398, 49–67 (2010).

    ADS 
    Article 

    Google Scholar 

  • 82.

    Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design: connectivity and marine reserves. Biol. Rev. https://doi.org/10.1111/brv.12155 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Munguia-Vega, A. et al. Ecological guidelines for designing networks of marine reserves in the unique biophysical environment of the Gulf of California. Rev. Fish Biol. Fish. 28, 749–776 (2018).

    Article 

    Google Scholar 

  • 84.

    Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Paris, C. B., Chérubin, L. M. & Cowen, R. K. Surfing, spinning, or diving from reef to reef: effects on population connectivity. Mar. Ecol. Prog. Ser. 347, 285–300 (2007).

    ADS 
    Article 

    Google Scholar 

  • 86.

    Mann, D. A., Casper, B. M., Boyle, K. S. & Tricas, T. C. On the attraction of larval fishes to reef sounds. Mar. Ecol. Prog. Ser. 338, 307–310 (2007).

    ADS 
    Article 

    Google Scholar 

  • 87.

    Esri. World Imagery [basemap]. 500m. Imagery, basemaps, and land cover. May 14, 2020. https://www.arcgis.com/home/webmap/viewer.html. (2020).


  • Source: Ecology - nature.com

    Southward decrease in the protection of persistent giant kelp forests in the northeast Pacific