in

An Italian dinosaur Lagerstätte reveals the tempo and mode of hadrosauriform body size evolution

  • 1.

    Csiki-Sava, Z., Buffetaut, E., Ősi, A., Pereda-Suberbiola, X. & Brusatte, S. L. Island life in the Cretaceous – faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys. https://doi.org/10.3897/zookeys.469.8439 (2015).

  • 2.

    Benton, M. J. et al. Dinosaurs and the island rule: The dwarfed dinosaurs from Haţeg Island. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 438–454 (2010).

    Google Scholar 

  • 3.

    Scotese, C. R. An Atlas of phanerozoic Paleogeographic maps: The seas come in and the seas go out. Annu. Rev. Earth Planet. Sci. 49, 679–728 (2021).

    CAS 

    Google Scholar 

  • 4.

    Randazzo, V. et al. The migration path of Gondwanian dinosaurs toward Adria: New insights from the Cretaceous of NW Sicily (Italy). Cretac. Res. 126, 104919 (2021).

  • 5.

    Dal Sasso, C., Pierangelini, G., Famiani, F., Cau, A. & Nicosia, U. First sauropod bones from Italy offer new insights on the radiation of Titanosauria between Africa and Europe. Cretac. Res. 64, 88–109 (2016).

    Google Scholar 

  • 6.

    Vlahović, I., Tišljar, J., Velić, I. & Matičec, D. Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 333–360 (2005).

    Google Scholar 

  • 7.

    Dalla Vecchia, F. M. Tethyshadros insularis, a new hadrosauroid dinosaur (Ornithischia) from the Upper Cretaceous of Italy. J. Vertebr. Paleontol. 29, 1100–1116 (2009).

    Google Scholar 

  • 8.

    Tarlao, A., Tentor, M., Tunis, G. & Venturini, S. Evidence of a tectonic phase in the Lower Senonian of the Villaggio del Pescatore area. Gortania Atti Museo Friulano Storia Naturale 135–142 (1993).

  • 9.

    Tarlao, A., Tentor, M., Tunis, G., Venturini, S. Stop 4: Villaggio del Pescatore. Atti Museo Geologico Paleontologico Monfalcone 135–142 (1995).

  • 10.

    Alessandro Palci. Ricostruzione Paleoambientale del Sito Fossilifero Senoniano del Villaggio del Pescatore (Trieste). (Università degli Studi di Trieste, 2003).

  • 11.

    Arbulla, D., Caffa, M., Cotza, F., Cucchi, F., Flora, O., Masetti, D., Pittau, P., Pugliese, N., Stenni, B., Tarlao, A., Tunisè, G. & Zini, L. The Santonina-Campanian succession of the Villaggio del Pescatore (Trieste karst) yielding the hadrosaur: palaeoecology, stratigraphy, sedimentology and geochemistry. in Sixth European workshop on vertebrate palaeontology abstracts (2001).

  • 12.

    Arbulla, D., Cotza, F., Cucchi, F., Dalla Vecchia, F. M., De Giusto, A., Flora, O., Masetti, D., Palci, A., Pittau, P., Pugliese, N., Stenni, B., Tarlao, A., Tunis, G. & Zini, L. La successione Santoniano–Campaniana del Villaggio del Pescatore (Carso Triestino) nel quale sono stati rinvenuti i resti di dinosauro. in Guida alle escursioni/excursions guide, Società Paleontologica Italiana 20–27 (EUT Edizioni Università di Trieste, 2006).

  • 13.

    Dal Sasso, C. Dinosaurs of Italy. Comptes Rendus Palevol. 2, 45–66 (2003).

    Google Scholar 

  • 14.

    Dal Sasso, C. & Brillante, G. Dinosaurs of Italy. (Indiana University Press, 2005).

  • 15.

    Dalla Vecchia, F., Tunis, G., Venturini, S. & Tarlao, A. Dinosaur track sites in the upper Cenomanian (Late Cretaceous) of Istrian Peninsula (Croatia). Boll. Della Soc. Paleontol. Ital. 40, 25–54 (2001).

  • 16.

    Dalla Vecchia, F. M. Observations on the presence of plant-eating dinosaurs in an oceanic carbonate platform. Nat. Nascosta 27 (2003).

  • 17.

    Nicosia, U., Avanzini, M., Barbera, C., Conti, M. A., Dalla Vecchia, F. M. e altri 15 coautori in ordine alfabetico. I vertebrati continentali del Paleozoico e Mesozoico. in Paleontologia dei Vertebrati in Italia vol. Memorie Museo Civico di Storia Naturale Verona 41–66 (Bonfiglio L., 2005).

  • 18.

    Dalla Vecchia, F. M. The impact of dinosaur palaeoichnology in palaeoenvironmental and palaeogeographic reconstructions: The case of the Periadriatic carbonate platforms. Oryctos 8, 19 (2008).

    Google Scholar 

  • 19.

    Delfino, M., Martin, J. E. & Buffetaut, E. A new species of Acynodon (Crocodylia) from the upper cretaceous (Santonian–Campanian) of Villaggio del Pescatore, Italy. Palaeontology 51, 1091–1106 (2008).

    Google Scholar 

  • 20.

    Dalla Vecchia, F. M. The unusual tail of Tethyshadros insularis (Dinosauria, Hadrosauroidea) from the Adriatic Island of the European Archipelago. Rivista Italiana di Paleontologia e Stratigrafia 126, 46 (2020).

    Google Scholar 

  • 21.

    Benson, R. B. J., Hunt, G., Carrano, M. T. & Campione, N. Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61, 13–48 (2018).

    Google Scholar 

  • 22.

    Dalla Vecchia, F. Telmatosaurus and the other hadrosaurids of the Cretaceous European Archipelago. An update. Nat. Nascosta 39, 1–18 (2009).

    Google Scholar 

  • 23.

    Soul, L. & Wright, D. Phylogenetic Comparative Methods: A User’s Guide for Paleontologists. (2020) https://doi.org/10.32942/osf.io/ytm5x.

  • 24.

    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Google Scholar 

  • 25.

    Chiocchini, M., Farinacci, A., Mancinelli, A., Molinari, V. & Potetti, M. Biostratigrafia a foraminiferi, dasicladali e calpionelle delle successioni carbonatiche mesozoiche dell’Appennino centrale (Italia). in Biostratigrafia dell’Italia centrale. Studi Geologici Camerti vol. Biostratigrafia dell’Italia centrale 129 (Mancinelli, A, 1994).

  • 26.

    Chiocchini, M., Pampaloni, M. L., Pichezzi, R. M. Microfacies and microfossils of the Mesozoic carbonate successions of Latium and Abruzzi (Central Italy), Vol. 269 (Memorie per Servire alla Descrizione della Carta Geologica D’Italia, ISPRA, Dipartimento Difesa del Suolo, Roma, 2012).

  • 27.

    Frijia, G., Parente, M., Di Lucia, M. & Mutti, M. Carbon and strontium isotope stratigraphy of the Upper Cretaceous (Cenomanian-Campanian) shallow-water carbonates of southern Italy: Chronostratigraphic calibration of larger foraminifera biostratigraphy. Cretac. Res. 53, 110–139 (2015).

    Google Scholar 

  • 28.

    Steuber, T., Korbar, T., Jelaska, V. & Gušić, I. Strontium-isotope stratigraphy of Upper Cretaceous platform carbonates of the island of Brač (Adriatic Sea, Croatia): Implications for global correlation of platform evolution and biostratigraphy. Cretac. Res. 26, 741–756 (2005).

    Google Scholar 

  • 29.

    Schlüter, M., Steuber, T. & Parente, M. Chronostratigraphy of Campanian-Maastrichtian platform carbonates and rudist associations of Salento (Apulia, Italy). Cretac. Res. 29, 100–114 (2008).

    Google Scholar 

  • 30.

    Consorti, L., Frijia, G. & Caus, E. Rotaloidean foraminifera from the Upper Cretaceous carbonates of Central and Southern Italy and their chronostratigraphic age. Cretac. Res. 70, 226–243 (2017).

    Google Scholar 

  • 31.

    Fourcade, E. Murciella cuvillieri n. gen. n. sp. nouveau foraminifère du Sénonien supérieur du sud-est de l’Espagne. Rev. Micropaléontol. 147–155 (1966).

  • 32.

    Fleury, J.-J. Rhapydioninidés du Campanien-Maastrichtien en région méditerranéenne : Les genres Murciella, Sigalveolina n. gen. et Cyclopseudedomia. Carnets Géologie Noteb. Geol. 18, 233–280 (2018).

  • 33.

    Dercourt et al. Atlas of Peri-Tethys Palaeogeographical Maps-digital-CCGM-CGMW. https://ccgm.org/en/atlases/189-atlas-of-peri-tethys-palaeogeographical-maps-.html (2000).

  • 34.

    Bosellini, A. Dinosaurs, “re-write” the geodynamics of the eastern Mediterranean and the paleogeography of the Apulia Platform. Earth-Sci. Rev. 59, 211–234 (2002).

    ADS 

    Google Scholar 

  • 35.

    Zarcone, G. et al. A possible bridge between Adria and Africa: New palaeobiogeographic and stratigraphic constraints on the Mesozoic palaeogeography of the Central Mediterranean area. Earth-Sci. Rev. 103, 154–162 (2010).

    ADS 

    Google Scholar 

  • 36.

    Ustaszewski, K. et al. Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): Implications for the collision of the Adriatic and European plates. Lithos 108, 106–125 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Dragičević, I. & Velić, I. The Northeastern Margin of the Adriatic Carbonate Platform. Geol. Croat. 55, 185–232 (2002).

    Google Scholar 

  • 38.

    Petti, F. et al. Cretaceous tetrapod tracks from Italy: A treasure trove of exceptional biodiversity. J. Mediterr. Earth Sci. 12, 167–191 (2020).

    Google Scholar 

  • 39.

    Blatnik, M. et al. Late Cretaceous and Paleogene Paleokarsts of the Northern Sector of the Adriatic Carbonate Platform. in Karstology in the classical Karst (eds. Knez, M., Otoničar, B., Petrič, M., Pipan, T. & Slabe, T.) 11–31 (Springer, 2020). https://doi.org/10.1007/978-3-030-26827-5_2.

  • 40.

    Boscarolli, D. & Dalla Vecchia, F. The Upper Hauterivian-Lower Barremian dinosaur site of Bale/valle (SW Istria, Croatia). (1999).

  • 41.

    Dalla Vecchia, F. M. Theropod footprints in the Cretaceous Adriatic-Dinaric Carbonate Platform (Italy and Croatia). Gaia 15, 355–367 (1998).

    Google Scholar 

  • 42.

    Dalla Vecchia, F. Cretaceous dinosaurs in the Adriatic-Dinaric Carbonate Platform (Italy and Croatia): Paleoenvironmental implications and paleogeographical hypotheses. Mem. Della Soc. Geol. Ital. 57, 89–100 (2002).

    Google Scholar 

  • 43.

    Dalla Vecchia, F., Vlahović, I., Posocco, L., Tarlao, A. & Tentor, M. Late Barremian and late Albian (Early Cretaceous) dinosaur tracksites in the main Brioni/Brijun island (SW Istria, Croatia). Nat. Nascosta 25, 1–36 (2002).

  • 44.

    Dalla Vecchia, F. M. et al. New dinosaur track sites in the Albian (Early Cretaceous) of the Istrian peninsula (Croatia) part I—Stratigraphy and sedimentology part II—paleontology. 69 (2000).

  • 45.

    Debeljak, I., Košir, A. & Otoničar, B. A preliminary note on dinosaurs and non-dinosaurian reptiles from the Upper Cretaceous carbonate platform succession at Kozina (SW Slovenia). Razpr. Slov. Akad. Znan. Umet. Razred Za Naravosl. Vede Diss. Acad. Sci. Artium Slov. Cl. IV Hist. Nat. 3–25 (1999).

  • 46.

    Debeljak, I., Košir, A., Buffetaut, E. & Otoničar, B. The Late Cretaceous dinosaurs and crocodiles of Kozina (SW Slovenia): A preliminary study. Mem. Della Soc. Geol. Ital. 57, 193–201 (2002).

    Google Scholar 

  • 47.

    Mezga, A. et al. A new dinosaur tracksite in the Cenomanian of Istria, Croatia. Riv. Ital. Paleontol. E Stratigr. 112, 435–445 (2006).

    Google Scholar 

  • 48.

    Mezga, A., Meyer, C. A., Tešović, B. C., Bajraktarević, Z. & Gušić, I. The first record of dinosaurs in the Dalmatian part (Croatia) of the Adriatic-Dinaric carbonate platform (ADCP). Cretac. Res. 27, 735–742 (2006).

    Google Scholar 

  • 49.

    Weishampel, D., Norman, D. & Grigorescu, D. Telmatosaurus transsylvanicus from the Late Cretaceous of Romania: the most basal hadrosaurid dinosaur. Palaeontology 36, 361–385 (1993).

    Google Scholar 

  • 50.

    Richard Owen. Report on British fossil reptiles, Part 2. in vol. 11 60–204 (1842).

  • 51.

    Seeley, H. G. On the classification of the fossil animals commonly named Dinosauria. Proc. R. Soc. Lond. 43, 165–171 (1887).

    Google Scholar 

  • 52.

    Marsh, O. C. Principal characters of American Jurassic dinosaurs, IV. Am. J. Sci. s3–21, 167–170 (1881).

  • 53.

    Sereno, P. C. The Origin and Evolution of Dinosaurs. Annu. Rev. Earth Planet. Sci. 25, 435–489 (1997).

    ADS 
    CAS 

    Google Scholar 

  • 54.

    Cope, E. D. Synopsis of the extinct Batrachia, Reptilia, and Aves of North America. Trans. Am. Philos. Soc. 1–252 (1870).

  • 55.

    Madzia, D., Jagt, J. W. M. & Mulder, E. W. A. Osteology, phylogenetic affinities and taxonomic status of the enigmatic late Maastrichtian ornithopod taxon Orthomerus dolloi (Dinosauria, Ornithischia). Cretac. Res. 108, 104334 (2020).

  • 56.

    Norman, D. On the history, osteology, and systematic position of the Wealden (Hastings Group) dinosaur Hypselospinus fittoni (Iguanodontia: Styracosterna). Zool. J. Linn. Soc. 173, 92 (2014).

  • 57.

    Xing, H., Mallon, J. C. & Currie, M. L. Supplementary cranial description of the types of Edmontosaurus regalis (Ornithischia: Hadrosauridae), with comments on the phylogenetics and biogeography of Hadrosaurinae. PLOS ONE 12, e0175253 (2017).

  • 58.

    Sues, H.-D. & Averianov, A. A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs. Proc. R. Soc. B Biol. Sci. 276, 2549–2555 (2009).

    Google Scholar 

  • 59.

    Shibata, M., Jintasakul, P., Azuma, Y. & You, H.-L. A New Basal Hadrosauroid Dinosaur from the Lower Cretaceous Khok Kruat Formation in Nakhon Ratchasima Province, Northeastern Thailand. PLOS ONE 10, e0145904 (2015).

  • 60.

    McDonald, A. T., Bird, J., Kirkland, J. I. & Dodson, P. Osteology of the Basal Hadrosauroid Eolambia caroljonesa (Dinosauria: Ornithopoda) from the Cedar Mountain Formation of Utah. PLoS ONE 7, e45712 (2012).

  • 61.

    Gates, T., Horner, J., Hanna, R. & Nelson, R. New Unadorned Hadrosaurine Hadrosaurid (Dinosauria, Ornithopoda) from the Campanian of North America. J. Vertebr. Paleontol. 31, 798–811 (2011).

    Google Scholar 

  • 62.

    Prieto-Marquez, A. New information on the cranium of Brachylophosaurus canadensis (Dinosauria, Hadrosauridae), with a revision of its phylogenetic position. J. Vertebr. Paleontol. 25, 144–156 (2005).

    Google Scholar 

  • 63.

    Gates, T. A. & Lamb, J. Redescription of Lophorhothon atopus (Ornithopoda: Dinosauria) from the Late Cretaceous of Alabama based on new material. Can. J. Earth Sci. https://doi.org/10.1139/cjes-2020-0173 (2021).

    Article 

    Google Scholar 

  • 64.

    Prieto-Márquez, A., Erickson, G. M. & Ebersole, J. A. Anatomy and osteohistology of the basal hadrosaurid dinosaur Eotrachodon from the uppermost Santonian (Cretaceous) of southern Appalachia. PeerJ 4, e1872 (2016).

  • 65.

    You, H.-L. & Li, D.-Q. A new basal hadrosauriform dinosaur (Ornithischia: Iguanodontia) from the Early Cretaceous of northwestern China. Can. J. Earth Sci. 46, 949–957 (2009).

    ADS 

    Google Scholar 

  • 66.

    Fowler, E. A. F. & Horner, J. R. A New Brachylophosaurin Hadrosaur (Dinosauria: Ornithischia) with an Intermediate Nasal Crest from the Campanian Judith River Formation of Northcentral Montana. PLOS ONE 10, e0141304 (2015).

  • 67.

    Gates, T. A., Hall, B. & Lamb, J. P. A redescription of Lophorhothon atopus (Ornithopoda: Dinosauria) from the Cretaceous of Alabama based on new material. Can. J. Earth Sci. 58, 918–935 (2021).

    Google Scholar 

  • 68.

    Gates, T. A., Evans, D. C. & Sertich, J. J. W. Description and rediagnosis of the crested hadrosaurid (Ornithopoda) dinosaur Parasaurolophus cyrtocristatus on the basis of new cranial remains. PeerJ 9, e10669 (2021).

  • 69.

    Griffin, C. T. et al. Assessing ontogenetic maturity in extinct saurian reptiles. Biol. Rev. 96, 470–525. https://doi.org/10.1111/brv.12666?af=R (2021).

    Google Scholar 

  • 70.

    Bailleul, A. M., Scannella, J. B., Horner, J. R. & Evans, D. C. Fusion patterns in the skulls of modern archosaurs reveal that sutures are ambiguous maturity indicators for the Dinosauria. PLOS ONE 11, e0147687 (2016).

  • 71.

    Francillon-Vieillot, H. et al. Microstructure and mineralization of vertebrate skeletal tissues. in Skeletal biomineralization: Patterns, processes and evolutionary trends 175–234 (American Geophysical Union (AGU), 1989). https://doi.org/10.1029/SC005p0175.

  • 72.

    Woodward Ballard, H., Horner, J. & Farlow, J. Osteohistological evidence for determinate growth in the American Alligator. J. Herpetol. 45, 339–342 (2011).

  • 73.

    Horner, J. R., Ricqlès, A. D. & Padian, K. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology based on an ontogenetic series of skeletal elements. J. Vertebr. Paleontol. 20, 115–129 (2000).

    Google Scholar 

  • 74.

    Erickson, G. M. Assessing dinosaur growth patterns: A microscopic revolution. Trends Ecol. Evol. 20, 677–684 (2005).

    PubMed 

    Google Scholar 

  • 75.

    Hone, D. W. E., Farke, A. A. & Wedel, M. J. Ontogeny and the fossil record: What, if anything, is an adult dinosaur?. Biol. Lett. 12, 20150947 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Sharma, P. P., Clouse, R. M. & Wheeler, W. C. Hennig’s semaphoront concept and the use of ontogenetic stages in phylogenetic reconstruction. Cladistics 33, 93–108 (2017).

    PubMed 

    Google Scholar 

  • 77.

    Campione, N. E., Brink, K. S., Freedman, E. A., McGarrity, C. T. & Evans, D. C. ‘Glishades ericksoni’, an indeterminate juvenile hadrosaurid from the Two Medicine Formation of Montana: implications for hadrosauroid diversity in the latest Cretaceous (Campanian-Maastrichtian) of western North America. Palaeobiodivers. Palaeoenviron. 93, 65–75 (2013).

    Google Scholar 

  • 78.

    Kobayashi, Y., Takasaki, R., Kubota, K. & Fiorillo, A. R. A new basal hadrosaurid (Dinosauria: Ornithischia) from the latest Cretaceous Kita-ama Formation in Japan implies the origin of hadrosaurids. Sci. Rep. 11(1), 1–15. https://www.nature.com/articles/s41598-021-87719-5 (2021).

  • 79.

    A new brachylophosaurin (Dinosauria: Hadrosauridae) from the Upper Cretaceous Menefee Formation of New Mexico [PeerJ]. https://peerj.com/articles/11084/.

  • 80.

    Prieto-Marquez, A. & Carrera Farias, M. The late-surviving early diverging Ibero-Armorican ‘duck-billed’ dinosaur Fylax and the role of the Late Cretaceous European Archipelago in hadrosauroid biogeography. Acta Palaeontol. Pol. 66, 425–435 (2021).

  • 81.

    Prieto-Márquez, A., Dalla Vecchia, F. M., Gaete, R. & Galobart, À. Diversity, Relationships, and biogeography of the Lambeosaurine Dinosaurs from the European Archipelago, with Description of the New Aralosaurin Canardia garonnensis. PLoS ONE 8, e69835 (2013).

  • 82.

    Longrich, N. R., Suberbiola, X. P., Pyron, R. A. & Jalil, N.-E. The first duckbill dinosaur (Hadrosauridae: Lambeosaurinae) from Africa and the role of oceanic dispersal in dinosaur biogeography. Cretac. Res. 120, 104678 (2021).

  • 83.

    Brown, C. M., Evans, D. C., Campione, N. E., O’Brien, L. J. & Eberth, D. A. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeogr. Palaeoclimatol. Palaeoecol. 372, 108–122 (2013).

    Google Scholar 

  • 84.

    Mallon, J. C., Evans, D. C., Ryan, M. J. & Anderson, J. S. Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada. BMC Ecol. 13, 14 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Mallon, J. C. Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage. Sci. Rep. 9, 15447 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Campione, N. E. & Evans, D. C. The accuracy and precision of body mass estimation in non-avian dinosaurs. Biol. Rev. 95, 1759–1797 (2020).

    PubMed 

    Google Scholar 

  • 87.

    Benítez-López, A. et al. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nat. Ecol. Evol. 5, 768–786 (2021).

    PubMed 

    Google Scholar 

  • 88.

    Fabbri M. et al. A shift in ontogenetic timing produced the unique sauropod skull. Evolution 75, 819–831 (2021).

    PubMed 

    Google Scholar 

  • 89.

    Chinsamy, A. & Raath, M. A. Preparation of fossil bone for histological examination. (1992).

  • 90.

    Fabbri, M., Wiemann, J., Manucci, F. & Briggs, D. E. G. Three-dimensional soft tissue preservation revealed in the skin of a non-avian dinosaur. Palaeontology 63, 185–193 (2020).

    Google Scholar 

  • 91.

    Takasaki R., et al. Re-examination of the cranial osteology of the Arctic Alaskan hadrosaurine with implications for its taxonomic status. https://doi.org/10.1371/journal.pone.0232410 (2020).

  • 92.

    Raven, T. J. & Maidment, S. C. R. The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus, and the use of basal exemplifiers in phylogenetic analysis. PeerJ 6, e4529 (2018).

  • 93.

    Goloboff, P. A. Extended implied weighting. Cladistics 30, 260–272 (2014).

    PubMed 

    Google Scholar 

  • 94.

    Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Google Scholar 

  • 95.

    Herne, M. C., Nair, J. P., Evans, A. R. & Tait, A. M. New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999. J. Paleontol. 93, 543–584 (2019).

    Google Scholar 

  • 96.

    Madzia, D. & Cau, A. Inferring ‘weak spots’ in phylogenetic trees: application to mosasauroid nomenclature. PeerJ 5, e3782 (2017).

  • 97.

    Madzia, D. & Cau, A. Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas. PeerJ 8, e8941 (2020).

  • 98.

    Nicholl, C. S. C., Rio, J. P., Mannion, P. D. & Delfino, M. A re-examination of the anatomy and systematics of the tomistomine crocodylians from the Miocene of Italy and Malta. J. Syst. Palaeontol. 18, 1853–1889 (2020).

    Google Scholar 

  • 99.

    Rio, J. P., Mannion, P. D., Tschopp, E., Martin, J. E. & Delfino, M. Reappraisal of the morphology and phylogenetic relationships of the alligatoroid crocodylian Diplocynodon hantoniensis from the late Eocene of the United Kingdom. Zool. J. Linn. Soc. 188, 579–629 (2020).

    Google Scholar 

  • 100.

    Groh, S. S., Upchurch, P., Barrett, P. M. & Day, J. J. The phylogenetic relationships of neosuchian crocodiles and their implications for the convergent evolution of the longirostrine condition. Zool. J. Linn. Soc. 188, 473–506 (2020).

    Google Scholar 

  • 101.

    Bell, M. A. & Lloyd, G. T. Strap: An R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology 58, 379–389 (2015).

    Google Scholar 

  • 102.

    Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341–1351 (1997).

    PubMed 

    Google Scholar 

  • 103.

    Butler, M. A. & King, A. A. Phylogenetic comparative analysis: A modeling approach for adaptive evolution. Am. Nat. 164, 683–695 (2004).

    PubMed 

    Google Scholar 

  • 104.

    Beaulieu, J. M., Jhwueng, D.-C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: Expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66, 2369–2383 (2012).

    PubMed 

    Google Scholar 

  • 105.

    Hunt, G. Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology 38, 351–373 (2012).

    Google Scholar 

  • 106.

    Grosheny, D. et al. The Cenomanian-Turonian Boundary Event (CTBE) in northern Lebanon as compared to regional data—Another set of evidences supporting a short-lived tectonic pulse coincidental with the event?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 447–461 (2017).

    Google Scholar 

  • 107.

    Prieto-Márquez, A. Global historical biogeography of hadrosaurid dinosaurs. Zool. J. Linn. Soc. 159, 503–525 (2010).

    Google Scholar 

  • 108.

    Nariaki Sugiura. Further analysts of the data by akaike’ s information criterion and the finite corrections: Further analysts of the data by Akaike’s: Communications in Statistics—Theory and Methods: Vol 7, No 1. https://doi.org/10.1080/03610927808827599 (1978).

  • 109.

    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. (Springer, Berlin, 2002). https://doi.org/10.1007/b97636.

  • 110.

    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  • 111.

    Gates, T. A., Organ, C. & Zanno, L. E. Bony cranial ornamentation linked to rapid evolution of gigantic theropod dinosaurs. Nat. Commun. 7, 12931 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 112.

    Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).

    Google Scholar 

  • 113.

    Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).


  • Source: Ecology - nature.com

    Scientists and musicians tackle climate change together

    Climate modeling confirms historical records showing rise in hurricane activity