in

Anthropogenic nutrient loads and season variability drive high atmospheric N2O fluxes in a fragmented mangrove system

  • 1.

    Kroeze, C., Dumont, E. & Seitzinger, S. P. New estimates of global emissions of N2O from rivers and estuaries. Environ. Sci. 2(2–3), 159–165. https://doi.org/10.1080/15693430500384671 (2005).

    Article 

    Google Scholar 

  • 2.

    Ciais, P. et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 465–570 (Cambridge University Press, 2014).

  • 3.

    Forster, P. et al. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007. The Physical Science Basis (2007).

  • 4.

    Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?. Philos. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2013.0122 (2013).

    Article 

    Google Scholar 

  • 5.

    Reis, C. R. G., Nardoto, G. B. & Oliveira, R. S. Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant Soil. 410(1–2), 1–19. https://doi.org/10.1007/s11104-016-3123-7#citeas (2017).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Rao, K., Priya, N. & Ramanathan, A. L. Impacts of anthropogenic perturbations on reactive nitrogen dynamics in mangrove ecosystem: Climate change perspective. J. Clim. Change 5(2), 9–21 (2019).

    Article 

    Google Scholar 

  • 7.

    Centre for Coastal Zone Management and Coastal Shelter Belt, Ministry of Environment, Forests and Climate change, Govt. of India http://iomenvis.nic.in/index2.aspx?slid=758&sublinkid=119&langid=1&mid=1 (2017).

  • 8.

    FSI. India State of Forest Report. 2019. Forest Survey of India, Ministry of Environment and Forests, Dehradun (2019).

  • 9.

    Borges, A. V. et al. Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). Sci. Total Environ. 610, 342–355. https://doi.org/10.1016/j.scitotenv.2017.08.047 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Lin, H. et al. Spatiotemporal variability of nitrous oxide in a large eutrophic estuarine system: The Pearl River Estuary, China. Mar. Chem. 182, 14–24. https://doi.org/10.1016/j.marchem.2016.03.005 (2016).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Reading, M. J. et al. Land use drives nitrous oxide dynamics in estuaries on regional and global scales. Limnol. 65(8), 1903–1920. https://doi.org/10.1002/lno.11426 (2020).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Chauhan, R., Ramanathan, A. L. & Adhya, T. K. Assessment of methane and nitrous oxide flux from mangrove along Eastern coast of India. Geofluids 8, 321332. https://doi.org/10.1111/j.1468-8123.2008.00227.x (2008).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Krithika, K., Purvaja, R. & Ramesh, R. Fluxes of methane and nitrous oxide from an Indian mangrove. Curr. Sci. 94, 218224, https://www.jstor.org/stable/24101861 (2008).

  • 14.

    Fernandes, S. O., LokaBharathi, P. A., Bonin, P. C. & Michotey, V. D. Denitrification: An important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India). J. Environ. Qual. 39, 1507–1516. https://doi.org/10.2134/jeq2009.0477 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys Res. 97, 7373–7382. https://doi.org/10.4319/lom.2014.12.351 (1992).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Wanninkhof, R. & McGillis, W. M. A cubic relationship between gas transfer and wind speed. Geophys. Res. Lett. 26, 1889–1893. https://doi.org/10.1029/1999GL900363 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Raymond, P. A. & Cole, J. J. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries 24, 312–317. https://doi.org/10.2307/1352954 (2001).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Hershey, R. N., Nandan, S. B. & Vasu, N. K. Trophic status and nutrient regime of Cochin estuarine system, India. Indian J. Mar. Sci. 49(08), 2582–6727 http://nopr.niscair.res.in/handle/123456789/55309 (2020).

  • 19.

    Hershey, R. N. et al. Nitrous oxide flux from a Tropical estuarine system (Cochin estuary, India). Reg. Stud. Mar. Sci. 30, 100725. https://doi.org/10.1016/j.rsma.2019.100725 (2019).

    Article 

    Google Scholar 

  • 20.

    Maher, D. T., Sippo, J. Z., Tait, D. R., Holloway, C. & Santos, I. R. Pristine mangrove creek waters are a sink of nitrous oxide. Sci. Rep. 6, 25701. https://doi.org/10.1038/srep25701 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Tait, D. R. et al. Greenhouse gas dynamics in a salt-wedge estuary revealed by high resolution cavity ring-down spectroscopy observations. Environ. Sci. Technol. 51(23), 13771–13778. https://doi.org/10.1021/acs.est.7b04627 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Wells, N. S. et al. Estuaries as sources and sinks of N2O across a land use gradient in subtropical Australia. Glob. Biogeochem. Cycles. 32, 877–894. https://doi.org/10.1029/2017GB005826 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Upstill-Goddard, R. C. Air–sea gas exchange in the coastal zone. Estuar Coast Shelf Sci. 70, 388–404. https://doi.org/10.1016/j.ecss.2006.05.043 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Zappa, C. J., Raymond, P. A., Terray, E. A. & Mcgillis, W. R. Variation in surface turbulence and gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26, 1401–1415. https://doi.org/10.1007/BF02803649/citeas (2003).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Borges, A. V. et al. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol. Oceanogr. 49, 1630–1641. https://doi.org/10.4319/lo.2004.49.5.1630 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Munoz-Hincapie, M., Morell, J. M. & Corredor, J. E. Increase of nitrous oxide flux to the atmosphere upon nitrogen addition to red mangroves sediments. Mar. Pollut. Bull. 44, 992–996. https://doi.org/10.1016/S0025-326X(02)00132-7 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Srinivas, K., Revichandran, P., Maheswaran, P. A., Mohammed Ashraf, T. T. & Nuncio, M. Propagation of tides in the Cochin estuarine system, southwest coast of India. Indian J. Geomar. Sci. 32(1), 14–24 (2003).

    Google Scholar 

  • 28.

    Srinivas, K., Revichandran, C. & Dinesh Kumar, P. K. Statistical forecasting of met-ocean parameters in the Cochin estuarine system, southwest coast of India. Indian J. Geomar. Sci. 32(4), 285–293 (2003).

    Google Scholar 

  • 29.

    Balachandran, K. K., Joseph, T., Nair, K. K. C., Nair, M. & Joseph, P. S. The complex estuarine formation of six rivers (Cochin backwaters system on westcoast of India)—Sources and distribution of trace metals and nutrients. In:APN/SASCOM/LOICZ Regional Workshop on Assessment of Material Fluxes To the Coastal Zone in South Asia and their Impacts. Sri Lanka National Committee of IGBP, Colombo, Sri Lanka, 359, http://drs.nio.org/drs/handle/2264/1340 (2002).

  • 30.

    Martin, G. D. et al. Freshwater influence on nutrient stoichiometry in a tropical estuary, southwest coast of India. Appl. Ecol. Environ. Res. 6, 57–64 (2008).

    Article 

    Google Scholar 

  • 31.

    Liu, D. et al. N2O fluxes and rates of nitrification and denitrification at the sediment-water interface in Taihu Lake, China. Water 10, 911. https://doi.org/10.3390/w10070911 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Luijn, F. V., Boers, P. C. M. & Lijklema, L. Comparison of denitrification rates in lake sediments obtained by the N2 flux method, the 15N isotope pairing technique and the mass balance approach. Water Res. 30, 893–900. https://doi.org/10.1016/0043-1354(95)00250-2 (1996).

    Article 

    Google Scholar 

  • 33.

    Pfenning, K. S. & McMahon, P. B. Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. J. Hydrol. 187, 283–295. https://doi.org/10.1016/S0022-1694(96)03052-1 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Borges, A. V. et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8(8), 637–642. https://doi.org/10.1038/ngeo2486 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Marzadri, A., Dee, M. M., Tonina, D., Bellin, A. & Tank, J. L. Role of surface and subsurface processes in scaling N2O emissions along riverine networks. Proc. Natl. Acad. Sci. U. S. A. 114(17), 4330–4335. https://doi.org/10.1073/pnas.1617454114 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Soued, C., del Giorgio, P. A. & Maranger, R. Nitrous oxide sinks and emissions in boreal aquatic networks in Quebec. Nat. Geosci. 9(2), 116–120, https://www.x-mol.com/paperRedirect/68353 (2016).

  • 37.

    Hu, M. P., Chen, D. J. & Dahlgren, R. A. Modeling nitrous oxide emission from rivers: A global assessment. Glob. Change Biol. 22(11), 3566–3582. https://doi.org/10.1111/gcb.13351 (2016).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Murray, R., Erler, D. V., Rosentreter, J., Wells, N. S. & Eyre, B. D. Seasonal and spatial controls on N2O concentrations and emissions in low-nitrogen estuaries: Evidence from three tropical systems. Mar. Chem. https://doi.org/10.1016/j.marchem.2020.103779 (2020).

    Article 

    Google Scholar 

  • 39.

    Ji, Q. X., Babbin, A. R., Peng, X. F., Bowen, J. L. & Ward, B. B. Nitrogen substrate dependent nitrous oxide cycling in salt marsh sediments. J. Mar. Res. 73(3–4), 71–92. https://doi.org/10.1016/j.marchem.2020.103779 (2015).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Punshon, S. & Moore, R. M. Nitrous oxide production and consumption in a eutrophic coastal embayment. Mar. Chem. 91(1–4), 37–51. https://doi.org/10.1016/j.marchem.2004.04.003 (2004).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Corredor, J. E., Morell, J. M. & Bauza, J. Atmospheric nitrous oxide fluxes from mangrove sediments. Mar. Pollut. Bull. 38, 473–478. https://doi.org/10.1016/S0025-326X(98)00172-6 (1999).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53. https://doi.org/10.1215/21573689-1597669 (2012).

    Article 

    Google Scholar 

  • 43.

    Alongi, D. M. Impact of global change on nutrient dynamics in mangrove forests. Forests. 9(10), 596. https://doi.org/10.3390/f9100596 (2018).

    Article 

    Google Scholar 

  • 44.

    Reef, R., Feller, I. C. & Lovelock, C. E. Nutrition of mangroves. Tree Physiol. 30, 1148–1160. https://doi.org/10.1093/treephys/tpq048 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Muller, D. et al. Nitrous oxide and methane in two tropical estuaries in a peat-dominated region of northwestern Borneo. Biogeosciences 13(8), 2415–2428. https://doi.org/10.5194/bg-13-2415-2016 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Hasegawa, T. & Okino, T. Seasonal variation of denitrification rate in Lake Suwa sediment. Limnology 5(1), 33–39. https://doi.org/10.1007/PL00021725/citeas (2004).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Myrstener, M., Jonsson, A. & Bergström, A. K. The effects of temperature and resource availability on denitrification and relative N2O production in boreal lake sediments. J. Environ. Sci. (China).

  • 48.

    Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis. 2nd edn. 310 (Fisheries Research Board of Canada, 1972).

  • 49.

    Grasshoff, K., Ehrhardt, M. & Kremling, K. Methods of seawater analysis. 2nd edn. 419 (Verlag Chemie, 1983).

  • 50.

    Garcia, H. & Gordon, L. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr. 37, 1307–1312. https://doi.org/10.4319/lo.1992.37.6.1307 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 51.

    Grasshoff, K., Ehrhardt, M. & Kremling, K. Methods of Seawater Analysis 3rd edn. (VCH, 1999).

    Google Scholar 

  • 52.

    David, A. R. Analysis of Total organic carbon. UMass Environmental Engineering Program (2012).

  • 53.

    Polunin, N. V. et al. Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar. Ecol. Prog. Ser. 220, 13–23. https://doi.org/10.3354/meps220013 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 54.

    McAuliffe, C. GC determination of solutes by multiple phase equilibrations. Chem. Tech. 1, 46–50 (1971).

    Google Scholar 

  • 55.

    Liss, P. S. & Merlivat, L. Air-sea exchange rates: Introduction and synthesis, in the role of air-sea exchange in geochemical cycling. In (ed. Buat-Menard, P.) 113–127 (D Reidel, 1986) https://doi.org/10.1007/978-94-009-4738-2_5.

  • 56.

    Weiss, R. F. & Price, B. A. Nitrous oxide solubility in water and seawater. Mar. Chem. 8, 347–359. https://doi.org/10.1016/0304-4203(80)90024-9 (1980).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Rao, G. D., Rao, V. D. & Sarma, V. V. S. S. Distribution and air–sea exchange of Nitrous oxide in the Coastal Bay of Bengal during peak discharge period(southwest monsoon). Mar. Chem. 155, 1–9. https://doi.org/10.1016/j.marchem.2013.04.014 (2013).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Old-growth forest carbon sinks overestimated

    MIT engineers make filters from tree branches to purify drinking water