Hill, G. E. Plumage coloration is a sexually selected indicator of male quality. Nature 350, 337 (1991).
Google Scholar
Cantarero, A., Pérez-Rodríguez, L., Romero-Haro, A. Á., Chastel, O. & Alonso-Alvarez, C. Carotenoid-based coloration predicts both longevity and lifetime fecundity in male birds, but testosterone disrupts signal reliability. PLoS ONE 14, e0221436. https://doi.org/10.1371/journal.pone.0221436 (2019).
Google Scholar
Zahavi, A. Mate selection—A selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).
Google Scholar
Alonso-Alvarez, C. & Galván, I. Free radical exposure creates paler carotenoid-based ornaments: A possible interaction in the expression of black and red traits. PLoS ONE 6 (2011).
Schantz, T. V., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition–dependent sexual signals. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 1–12 (1999).
Google Scholar
Tomášek, O. et al. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling. Sci. Rep. 6, 23546. https://doi.org/10.1038/srep23546 (2016).
Google Scholar
Sild, E., Sepp, T., Männiste, M. & Hõrak, P. Carotenoid intake does not affect immune-stimulated oxidative burst in greenfinches. J. Exp. Biol. 214, 3467–3473 (2011).
Google Scholar
Mohr, A. E., Girard, M., Rowe, M., McGraw, K. J. & Sweazea, K. L. Varied effects of dietary carotenoid supplementation on oxidative damage in tissues of two waterfowl species. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 231, 67–74. https://doi.org/10.1016/j.cbpb.2019.02.003 (2019).
Google Scholar
Costantini, D. & Møller, A. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2008).
Google Scholar
Simons, M. J. P., Cohen, A. A. & Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds—A meta-analysis. PLoS ONE 7, e43088. https://doi.org/10.1371/journal.pone.0043088 (2012).
Google Scholar
Hill, G. E. et al. Plumage redness signals mitochondrial function in the house finch. Proc. R. Soc. B 286, 20191354 (2019).
Google Scholar
Hill, G. E. Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol. Lett. 14, 625–634 (2011).
Google Scholar
del Cerro, S. et al. Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus). Oecologia 162, 825–835. https://doi.org/10.1007/s00442-009-1510-y (2010).
Google Scholar
Hõrak, P. et al. How coccidian parasites affect health and appearance of greenfinches. J. Anim. Ecol. 73, 935–947 (2004).
Google Scholar
Weaver, R. J., Santos, E. S., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).
Google Scholar
Tyczkowski, J. K., Hamilton, P. B. & Ruff, M. D. Altered metabolism of carotenoids during pale-bird syndrome in chickens infected with Eimeria acervulina. Poult. Sci. 70, 2074–2081. https://doi.org/10.3382/ps.0702074 (1991).
Google Scholar
Joyner, L. et al. Amino-acid malabsorption and intestinal leakage of plasma-proteins in young chicks infected with Eimeria acervulina. Avian Pathol. 4, 17–33 (1975).
Google Scholar
Sharma, V. & Fernando, M. Effect of Eimeria acervulina infection on nutrient retention with special reference to fat malabsorption in chickens. Can. J. Comp. Med. 39, 146 (1975).
Google Scholar
Pout, D. D. Villous atrophy and coccidiosis. Nature 213, 306–307 (1967).
Google Scholar
Sanches, A. W. D. et al. Basal and infectious enteritis in broilers under the I See inside methodology: A chronological evaluation. Front. Vet. Sci. 6, 512. https://doi.org/10.3389/fvets.2019.00512 (2020).
Google Scholar
Russell, J. Jr. & Ruff, M. Eimeria spp.: Influence of coccidia on digestion (amylolytic activity) in broiler chickens. Exp. Parasitol. 45, 234–240 (1978).
Google Scholar
Kouwenhoven, B. & van der Horst, C. J. Disturbed intestinal absorption of vitamin A and carotenes and the effect of a low pH during Eimeria acervulina infection in the domestic fowl (Gallus domesticus). Z. Parasitenkd. 38, 152–161 (1972).
Google Scholar
Ruff, M. D. & Fuller, H. L. Some mechanisms of reduction of carotenoid levels in chickens infected with Eimeria acervulina or E. tenella. J. Nutr. 105, 1447–1456 (1975).
Google Scholar
Swayne, D. E., Getzy, D., Slemons, R. D., Bocetti, C. & Kramer, L. Coccidiosis as a cause of transmural lymphocytic enteritis and mortality in captive Nashville warblers (Vermivora ruficapilla). J. Wildl. Dis. 27, 615–620 (1991).
Google Scholar
Gosbell, M. C., Olaogun, O. M., Luk, K. & Noormohammadi, A. H. Investigation of systemic isosporosis outbreaks in an aviary of greenfinch (Carduelis chloris) and goldfinch (Carduelis carduelis) and a possible link with local wild sparrows (Passer domesticus). Aust. Vet. J. 98, 338–344 (2020).
Google Scholar
Baeta, R., Faivre, B., Motreuil, S., Gaillard, M. & Moreau, J. Carotenoid trade-off between parasitic resistance and sexual display: An experimental study in the blackbird (Turdus merula). Proc. R. Soc. B Biol. Sci. 275, 427–434 (2008).
Google Scholar
Amin, A., Bilic, I., Liebhart, D. & Hess, M. Trichomonads in birds—A review. Parasitology 141, 733–747 (2014).
Google Scholar
Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5 (2010).
Chavatte, J.-M. et al. An outbreak of trichomonosis in European greenfinches Chloris chloris and European goldfinches Carduelis carduelis wintering in Northern France. Parasite 26, 21–21. https://doi.org/10.1051/parasite/2019022 (2019).
Google Scholar
Huyghebaert, G., Ducatelle, R. & Immerseel, F. V. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 187, 182–188. https://doi.org/10.1016/j.tvjl.2010.03.003 (2011).
Google Scholar
Singer, R. S. & Hofacre, C. L. Potential impacts of antibiotic use in poultry production. Avian Dis. 50, 161–172, 112 (2006).
Google Scholar
Miles, R. D., Butcher, G. D., Henry, P. R. & Littell, R. C. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology1. Poult. Sci. 85, 476–485. https://doi.org/10.1093/ps/85.3.476 (2006).
Google Scholar
Oh, S., Lillehoj, H. S., Lee, Y., Bravo, D. & Lillehoj, E. P. Dietary antibiotic growth promoters down-regulate intestinal inflammatory cytokine expression in chickens challenged with LPS or co-infected with Eimeria maxima and Clostridium perfringens. Front. Vet. Sci. https://doi.org/10.3389/fvets.2019.00420 (2019).
Google Scholar
Meitern, R., Lind, M. A., Karu, U. & Hõrak, P. Simple and noninvasive method for assessment of digestive efficiency: Validation of fecal steatocrit in greenfinch coccidiosis model. Ecol. Evol. 6, 8756–8763 (2016).
Google Scholar
Surai, P., Speake, B. & Sparks, N. Carotenoids in avian nutrition and embryonic development. 1. Absorption, availability and levels in plasma and egg yolk. J. Poultry Sci. 38, 1–27 (2001).
Google Scholar
Madonia, C., Hutton, P., Giraudeau, M. & Sepp, T. Carotenoid coloration is related to fat digestion efficiency in a wild bird. Sci. Nat. 104, 96. https://doi.org/10.1007/s00114-017-1516-y (2017).
Google Scholar
Hõrak, P. & Männiste, M. Viability selection affects black but not yellow plumage colour in greenfinches. Oecologia 180, 23–32 (2016).
Google Scholar
Saks, L., McGraw, K. & Hõrak, P. How feather colour reflects its carotenoid content. Funct. Ecol. 17, 555–561 (2003).
Google Scholar
Sepp, T. et al. Coccidian infection causes oxidative damage in greenfinches. PLoS ONE 7 (2012).
Männiste, M. & Hõrak, P. Emerging infectious disease selects for darker plumage coloration in greenfinches. Front. Ecol. Evol. 2, 4 (2014).
Google Scholar
Hackstein, J. H. et al. Parasitic apicomplexans harbor a chlorophyll a-D1 complex, the potential target for therapeutic triazines. Parasitol. Res. 81, 207–216 (1995).
Google Scholar
Krautwald-Junghanns, M.-E., Zebisch, R. & Schmidt, V. Relevance and treatment of coccidiosis in domestic pigeons (Columba livia forma domestica) with particular emphasis on toltrazuril. Journal of Avian Medicine and Surgery, 1–5 (2009).
Löfmark, S., Edlund, C. & Nord, C. E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis. 50, S16–S23. https://doi.org/10.1086/647939 (2010).
Google Scholar
Cramp, S. & Perrins, C. Handbook of the Birds of the Western Palearctic. Volume IV. Terns to Woodpeckers (ed. Cramp, S.), 353–363 (1994).
Stradi, R., Celentano, G., Rossi, E., Rovati, G. & Pastore, M. Carotenoids in bird plumage—I. The carotenoid pattern in a series of Palearctic Carduelinae. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 110, 131–143 (1995).
Google Scholar
Stradi, R. The colour of flight: carotenoids in bird plumages. (Solei Gruppo Editoriale Informatico, 1998).
McGraw, K., Hill, G., Stradi, R. & Parker, R. The effect of dietary carotenoid access on sexual dichromatism and plumage pigment composition in the American goldfinch. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 131, 261–269 (2002).
Google Scholar
Sepp, T., Karu, U., Sild, E., Männiste, M. & Hõrak, P. Effects of carotenoids, immune activation and immune suppression on the intensity of chronic coccidiosis in greenfinches. Exp. Parasitol. 127, 651–657. https://doi.org/10.1016/j.exppara.2010.12.004 (2011).
Google Scholar
Hõrak, P. et al. Dexamethasone inhibits corticosterone deposition in feathers of greenfinches. Gen. Comp. Endocrinol. 191, 210–214 (2013).
Google Scholar
Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Lin. Soc. 41, 315–352 (1990).
Google Scholar
Lessells, C. & Boag, P. T. Unrepeatable repeatabilities: A common mistake. Auk 104, 116–121 (1987).
Google Scholar
Hõrak, P., Saks, L., Karu, U. & Ots, I. Host resistance and parasite virulence in greenfinch coccidiosis. J. Evol. Biol. 19, 277–288 (2006).
Google Scholar
Jenni-Eiermann, S. & Jenni, L. Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the Garden Warbler. Auk 111, 888–899 (1994).
Google Scholar
Saint-Georges-Chaumet, Y. & Edeas, M. Microbiota–mitochondria inter-talk: Consequence for microbiota–host interaction. Pathogens Dis. https://doi.org/10.1093/femspd/ftv096 (2015).
Google Scholar
Franco-Obregón, A. & Gilbert, J. A. The microbiome-mitochondrion connection: Common ancestries, common mechanisms, common goals. mSystems https://doi.org/10.1128/mSystems.00018-17 (2017).
Google Scholar
Paterson, S. The immunology and ecology of co-infection. Mol. Ecol. 22, 2603–2604 (2013).
Google Scholar
Quillfeldt, P. et al. Prevalence and genotyping of Trichomonas infections in wild birds in central Germany. PLoS ONE 13, e0200798–e0200798. https://doi.org/10.1371/journal.pone.0200798 (2018).
Google Scholar
Kinnula, H., Mappes, J. & Sundberg, L.-R. Coinfection outcome in an opportunistic pathogen depends on the inter-strain interactions. BMC Evol. Biol. 17, 77. https://doi.org/10.1186/s12862-017-0922-2 (2017).
Google Scholar
Gill, H. & Paperna, I. Proliferative visceral Isospora (atoxoplasmosis) with morbid impact on the Israeli sparrow Passer domesticus biblicus Hartert, 1904. Parasitol. Res. 103, 493. https://doi.org/10.1007/s00436-008-0986-4 (2008).
Google Scholar
Shojadoost, B., Vince, A. R. & Prescott, J. F. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: A critical review. Vet. Res. 43, 74. https://doi.org/10.1186/1297-9716-43-74 (2012).
Google Scholar
Williams, R. Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 34, 159–180 (2005).
Google Scholar
Freeman, C. D., Klutman, N. E. & Lamp, K. C. Metronidazole. Drugs 54, 679–708. https://doi.org/10.2165/00003495-199754050-00003 (1997).
Google Scholar
Hill, G. E. Energetic constraints on expression of carotenoid-based plumage coloration. J. Avian Biol. 31, 559–566 (2000).
Google Scholar
Hill, G. E. Cellular respiration: The nexus of stress, condition, and ornamentation. Integr. Comp. Biol. 54, 645–657 (2014).
Google Scholar
Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut 65, 1906. https://doi.org/10.1136/gutjnl-2016-312297 (2016).
Google Scholar
Heiss, C. N. & Olofsson, L. E. Gut microbiota-dependent modulation of energy metabolism. J. Innate Immun. 10, 163–171. https://doi.org/10.1159/000481519 (2018).
Google Scholar
Lind, M.-A., Hõrak, P., Sepp, T. & Meitern, R. Corticosterone levels correlate in wild-grown and lab-grown feathers in greenfinches (Carduelis chloris) and predict behaviour and survival in captivity. Horm. Behav. 118, 104642 (2020).
Google Scholar
Sepp, T., Sild, E. & Horak, P. Hematological condition indexes in greenfinches: Effects of captivity and diurnal variation. Physiol. Biochem. Zool. 83, 276–282 (2010).
Google Scholar
Source: Ecology - nature.com