in

Aposematism facilitates the diversification of parental care strategies in poison frogs

  • 1.

    Clutton-Brock, T. H. The Evolution of Parental Care Vol. 64 (Princeton University Press, 1991).

    Book 

    Google Scholar 

  • 2.

    Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, 2012).

    Book 

    Google Scholar 

  • 3.

    Hansell, M. Bird Nests and Construction Behaviour (Cambridge University Press, 2000).

    Book 

    Google Scholar 

  • 4.

    Doody, J. S., Freedberg, S. & Keogh, J. S. Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses. Q. Rev. Biol. 84, 229–252 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Boness, D. J. & Don Bowen, W. The evolution of maternal care in pinnipeds: new findings raise questions about the evolution of maternal feeding strategies. Bioscience 46, 645–654 (1996).

    Article 

    Google Scholar 

  • 6.

    Salomon, M., Mayntz, D., Toft, S. & Lubin, Y. Maternal nutrition affects offspring performance via maternal care in a subsocial spider. Behav. Ecol. Sociobiol. 65, 1191–1202 (2011).

    Article 

    Google Scholar 

  • 7.

    Summers, K. Mating and aggressive behaviour in dendrobatid frogs from Corcovado National Park, Costa Rica: a comparative study. Behaviour 137, 7–24 (2000).

    Article 

    Google Scholar 

  • 8.

    Li, D. & Jackson, R. R. A predator’s preference for egg-carrying prey: a novel cost of parental care. Behav. Ecol. Sociobiol. 55, 129–136 (2003).

    Article 

    Google Scholar 

  • 9.

    Stiver, K. A. & Alonzo, S. H. Parental and mating effort: is there necessarily a trade-off?. Ethology 115, 1101–1126 (2009).

    Article 

    Google Scholar 

  • 10.

    Ercit, K., Martinez-Novoa, A. & Gwynne, D. T. Egg load decreases mobility and increases predation risk in female black-horned tree crickets (Oecanthus nigricornis). PLoS ONE 9, e110298 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Ghalambor, C. K. & Martin, T. E. Fecundity-survival trade-offs and parental risk-taking in birds. Science 292, 494–497 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Thorogood, R., Ewen, J. G. & Kilner, R. M. Sense and sensitivity: responsiveness to offspring signals varies with the parents’ potential to breed again. Philos. Trans. R. Soc. B. 278, 2638–2645 (2011).

    Google Scholar 

  • 13.

    Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).

    Google Scholar 

  • 14.

    Weir, B. J. & Rowlands, I. Reproductive strategies of mammals. Annu. Rev. Ecol. Evol. Syst. 4, 139–163 (1973).

    Article 

    Google Scholar 

  • 15.

    Kvarnemo, C. In Evolutionary Behavioral Ecology (ed. FoxWestneat, C. W.) (Oxford University Press, 2010).

    Google Scholar 

  • 16.

    Alonso-Alvarez, C. & Velando, A. Benefits and costs of parental care. The evolution of parental care, 40–61 (2012).

  • 17.

    Farmer, C. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 155, 326–334 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Ar, A. & Yom-Tov, Y. The evolution of parental care in birds. Evolution 32, 655–669 (1978).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Gubernick, D. J. Parent and infant attachment in mammals. In Parental care in mammals 243–305 (Springer, 1981).

  • 20.

    Case, T. J. Endothermy and parental care in the terrestrial vertebrates. Am. Nat. 112, 861–874 (1978).

    Article 

    Google Scholar 

  • 21.

    Gross, M. R. & Shine, R. Parental care and mode of fertilization in ectothermic vertebrates. Evolution 35, 775–793 (1981).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Balshine, S. Patterns of parental care in vertebrates. Evol. Parental Care 62, 80 (2012).

    Google Scholar 

  • 23.

    Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 1–12 (2019).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Schulte, L. M., Ringler, E., Rojas, B. & Stynoski, J. L. Developments in amphibian parental care research: history, present advances, and future perspectives. Herpetol. Monogr. 34, 71–97 (2020).

    Article 

    Google Scholar 

  • 25.

    Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010).

    Google Scholar 

  • 26.

    Weygoldt, P. Evolution of parental care in dart poison frogs (Amphibia: Anura: Dendrobatidae). J. Zoolog. Syst. Evol. 25, 51–67 (1987).

    Article 

    Google Scholar 

  • 27.

    Summers, K. & Tumulty, J. in Sexual Selection 289–320 (Elsevier, 2014).

  • 28.

    Lehtinen, R., Lannoo, M. J. & Wassersug, R. J. Phytotelm-breeding anurans: past, present and future research. Misc. Publ. Museum Zool. Univ. Michigan 193, 1–9 (2004).

    Google Scholar 

  • 29.

    Brust, D. G. Maternal brood care by Dendrobates pumilio: a frog that feeds its young. J. Herpetol. 27, 96–98 (1993).

    Article 

    Google Scholar 

  • 30.

    Bourne, G. R., Collins, A. C., Holder, A. M. & McCarthy, C. L. Vocal communication and reproductive behavior of the frog Colostethus beebei in Guyana. J. Herpetol. 35, 272–281 (2001).

    Article 

    Google Scholar 

  • 31.

    Schulte, L. M. Feeding or avoiding? Facultative egg feeding in a Peruvian poison frog (Ranitomeya variabilis). Ethol. Ecol. Evol. 26, 58–68. https://doi.org/10.1080/03949370.2013.850453 (2014).

    Article 

    Google Scholar 

  • 32.

    Beck, K. B., Loretto, M.-C., Ringler, M., Hödl, W. & Pašukonis, A. Relying on known or exploring for new? Movement patterns and reproductive resource use in a tadpole-transporting frog. PeerJ 5, e3745 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Pašukonis, A., Loretto, M.-C. & Rojas, B. How far do tadpoles travel in the rainforest? Parent-assisted dispersal in poison frogs. Evol. Ecol. 33, 613–623 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Summers, K. Metabolism and parental care in ectotherms: a comment on Beekman et al. Behav. Ecol. 30, 593–594 (2019).

    Article 

    Google Scholar 

  • 35.

    Santos, J. C. & Cannatella, D. C. Phenotypic integration emerges from aposematism and scale in poison frogs. Proc. Natl. Acad. Sci. 108, 6175–6180 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Stynoski, J. L., Schulte, L. M. & Rojas, B. Poison frogs. Curr. Biol. 25, R1026–R1028 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Rojas, B., Valkonen, J. & Nokelainen, O. Aposematism. Curr. Biol. 25, R350–R351 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1990).

    Google Scholar 

  • 39.

    Santos, J. C., Coloma, L. A. & Cannatella, D. C. Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc. Natl. Acad. Sci. 100, 12792–12797 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Vences, M. et al. Convergent evolution of aposematic coloration in Neotropical poison frogs: a molecular phylogenetic perspective. Org. Divers. Evol. 3, 215–226 (2003).

    Article 

    Google Scholar 

  • 41.

    Daly, J. W. et al. An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 32, 657–663 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Saporito, R. A., Spande, T. F., Garraffo, H. M. & Donnelly, M. A. Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles 79, 277–297 (2009).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Santos, J. C. et al. Aposematism increases acoustic diversification and speciation in poison frogs. Philos. Trans. R. Soc. B. 281, 20141761 (2014).

    Google Scholar 

  • 44.

    Caldwell, J. P. The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae). J. Zool. 240, 75–101 (1996).

    Article 

    Google Scholar 

  • 45.

    Summers, K., Symula, R., Clough, M. & Cronin, T. Visual mate choice in poison frogs. Philos. Trans. R. Soc. B. 266, 2141–2145 (1999).

    CAS 

    Google Scholar 

  • 46.

    Duellman, W. E. & Trueb, L. Biology of Amphibians (JHU Press, 1994).

    Google Scholar 

  • 47.

    Summers, K. & McKeon, C. S. The evolutionary ecology of phytotelmata use in Neotropical poison frogs. Misc. Publ. Mus. Zool. Univ. Mich. 193, 55–73 (2004).

    Google Scholar 

  • 48.

    Summers, K., Sea McKeon, C. & Heying, H. The evolution of parental care and egg size: a comparative analysis in frogs. Philos. Trans. R. Soc. B. 273, 687–692 (2006).

    Google Scholar 

  • 49.

    Wells, K. D. Courtship and parental behavior in a Panamanian poison-arrow frog (Dendrobates auratus). Herpetologica 34, 148–155 (1978).

    Google Scholar 

  • 50.

    Summers, K. Sexual selection and intra-female competition in the green poison-dart frog, Dendrobates auratus. Anim. Behav. 37, 797–805 (1989).

    Article 

    Google Scholar 

  • 51.

    Summers, K. Paternal care and the cost of polygyny in the green dart-poison frog. Behav. Ecol. Sociobiol. 27, 307–313 (1990).

    Article 

    Google Scholar 

  • 52.

    Summers, K. & Amos, W. Behavioral, ecological, and molecular genetic analyses of reproductive strategies in the Amazonian dart-poison frog, Dendrobates ventrimaculatus. Behav. Ecol. 8, 260–267 (1997).

    Article 

    Google Scholar 

  • 53.

    Limerick, S. Courtship behavior and oviposition of the poison-arrow frog Dendrobates pumilio. Herpetologica 36, 69–71 (1980).

    Google Scholar 

  • 54.

    Pröhl, H. & Hödl, W. Parental investment, potential reproductive rates, and mating system in the strawberry dart-poison frog, Dendrobates pumilio. Behav. Ecol. Sociobiol. 46, 215–220 (1999).

    Article 

    Google Scholar 

  • 55.

    Brown, J. L., Morales, V. & Summers, K. A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am. Nat. 175, 436–446 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Yang, Y., Blomenkamp, S., Dugas, M. B., Richards-Zawacki, C. L. & Pröhl, H. Mate choice versus mate preference: inferences about color-assortative mating differ between field and lab assays of poison frog behavior. Am. Nat. 193, 598–607 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Wells, K. D. Behavoral ecology and social organization of a dendrobatid frog (Colostethus inguinalis). Behav. Ecol. Sociobiol. 6, 199–209 (1980).

    Article 

    Google Scholar 

  • 58.

    Luddecke, H. Behavioral aspects of the reproductive biology of the Andean frog Colostethus palmatus (Amphibia: Dendrobatidae). Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 23, S303–S303 (1999).

    Google Scholar 

  • 59.

    Montanarin, A., Kaefer, I. L. & Lima, A. P. Courtship and mating behaviour of the brilliant-thighed frog Allobates femoralis from Central Amazonia: Implications for the study of a species complex. Ethol. Ecol. Evol. 23, 141–150 (2011).

    Article 

    Google Scholar 

  • 60.

    Ursprung, E., Ringler, M., Jehle, R. & Hoedl, W. Strong male/male competition allows for nonchoosy females: High levels of polygynandry in a territorial frog with paternal care. Mol. Ecol. 20, 1759–1771 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Stückler, S. et al. Spatio-temporal characteristics of the prolonged courtship in brilliant-thighed poison frogs, Allobates femoralis. Herpetologica 75, 268–279 (2019).

    Article 

    Google Scholar 

  • 62.

    Symula, R., Schulte, R. & Summers, K. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Philos. Trans. R. Soc. B 268, 2415–2421 (2001).

    CAS 

    Google Scholar 

  • 63.

    Summers, K. Mating strategies in two species of dart-poison frogs: a comparative study. Anim. Behav. 43, 907–919 (1992).

    Article 

    Google Scholar 

  • 64.

    Rojas, B. & Pašukonis, A. From habitat use to social behavior: natural history of a voiceless poison frog, Dendrobates tinctorius. PeerJ 7, e7648 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Maan, M. E. & Cummings, M. E. Poison frog colors are honest signals of toxicity, particularly for bird predators. Am. Nat. 179, E1–E14 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Grant, T. et al. Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull. Am. Mus. Nat. 2006, 1–262 (2006).

    Google Scholar 

  • 67.

    Grant, T. et al. Phylogenetic systematics of dart-poison frogs and their relatives revisited (Anura: Dendrobatoidea). S. Am. J. Herpetol. 12, S1–S90 (2017).

    Article 

    Google Scholar 

  • 68.

    Duellman, W. E. Frogs of the genus Colostethus (Anura; Dendrobatidae) in the Andes of northern Peru (2004).

  • 69.

    Fairbairn, D. J. Odd Couples: Extraordinary Differences Between the Sexes in the Animal Kingdom (Princeton University Press, 2013).

    Book 

    Google Scholar 

  • 70.

    Fairbairn, D. J., Blanckenhorn, W. U. & Székely, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007).

    Book 

    Google Scholar 

  • 71.

    Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Parental care and the evolution of terrestriality in frogs. Philos. Trans. R. Soc. B. 286, 20182737 (2019).

    Google Scholar 

  • 72.

    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).

    Google Scholar 

  • 73.

    Kelber, A., Vorobyev, M. & Osorio, D. Animal colour vision–behavioural tests and physiological concepts. Biol. Rev. 78, 81–118 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).

    Article 

    Google Scholar 

  • 76.

    Kemp, D. J. et al. An integrative framework for the appraisal of coloration in nature. Am. Nat. 185, 705–724 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods. Ecol. Evol. 6, 1320–1331 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Maia, R. & White, T. E. Comparing colors using visual models. Behav. Ecol. 29, 649–659 (2018).

    Article 

    Google Scholar 

  • 79.

    Bergeron, Z. T. & Fuller, R. C. Using human vision to detect variation in avian coloration: how bad is it?. Am. Nat. 191, 269–276 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Yang, Z., Kumar, S. & Nei, M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641–1650 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series. B. Stat. Methodo. 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 84.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article 

    Google Scholar 

  • 85.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    MATH 

    Google Scholar 

  • 86.

    Barker, D., Meade, A. & Pagel, M. Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23, 14–20 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 87.

    Lindstedt, C., Boncoraglio, G., Cotter, S. C., Gilbert, J. D. J. & Kilner, R. M. Parental care shapes evolution of aposematism and provides lifelong protection against predators. bioRxiv 25, 644864 (2019).

    Google Scholar 

  • 88.

    Donnelly, M. A. Demographic effects of reproductive resource supplementation in a territorial frog, Dendrobates pumilio. Ecol. Monogr. 59, 207–221 (1989).

    Article 

    Google Scholar 

  • 89.

    Rojas, B. & Endler, J. A. Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evol. Ecol. 27, 739–753 (2013).

    Article 

    Google Scholar 

  • 90.

    Pröhl, H. Territorial behavior in dendrobatid frogs. J. Herpetol. 39, 354–365 (2005).

    Article 

    Google Scholar 

  • 91.

    Speed, M. P., Brockhurst, M. A. & Ruxton, G. D. The dual benefits of aposematism: predator avoidance and enhanced resource collection. Evolution 64, 1622–1633 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Fincke, O. M. Organization of predator assemblages in Neotropical tree holes: effects of abiotic factors and priority. Ecol. Entomol. 24, 13–23 (1999).

    Article 

    Google Scholar 

  • 93.

    Summers, K. The effects of cannibalism on Amazonian poison frog egg and tadpole deposition and survivorship in Heliconia axil pools. Oecologia 119, 557–564 (1999).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    McKeon, C. S. & Summers, K. Predator driven reproductive behavior in a tropical frog. Evol. Ecol. 27, 725–737 (2013).

    Article 

    Google Scholar 

  • 95.

    Amézquita, A., Castro, L., Arias, M., González, M. & Esquivel, C. Field but not lab paradigms support generalisation by predators of aposematic polymorphic prey: the Oophaga histrionica complex. Evol. Ecol. 27, 769–782 (2013).

    Article 

    Google Scholar 

  • 96.

    Lawrence, J. P. et al. Weak warning signals can persist in the absence of gene flow. PNAS 116, 19037–19045 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Lack, D. The natural regulation of animal numbers. The Natural Regulation of Animal Numbers. (1954).

  • 98.

    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).

    Article 

    Google Scholar 

  • 99.

    Brown, J., Morales, V. & Summers, K. Divergence in parental care, habitat selection and larval life history between two species of Peruvian poison frogs: an experimental analysis. J. Evol. Biol. 21, 1534–1543 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Brown, J. L., Morales, V. & Summers, K. Tactical reproductive parasitism via larval cannibalism in Peruvian poison frogs. Biol. Lett. 5, 148–151 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 101.

    Brown, J. L., Morales, V. & Summers, K. Home range size and location in relation to reproductive resources in poison frogs (Dendrobatidae): a Monte Carlo approach using GIS data. Anim. Behav. 77, 547–554 (2009).

    Article 

    Google Scholar 

  • 102.

    Kok, P. J., Willaert, B. & Means, D. B. A new diagnosis and description of Anomaloglossus roraima (La Marca, 1998) (Anura: Aromobatidae: Anomaloglossinae), with description of its tadpole and call. S. Am. J. Herpetol. 8, 29–45 (2013).

    Article 

    Google Scholar 

  • 103.

    Pašukonis, A. et al. The significance of spatial memory for water finding in a tadpole-transporting frog. Anim. Behav. 116, 89–98 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Pašukonis, A., Warrington, I., Ringler, M. & Hödl, W. Poison frogs rely on experience to find the way home in the rainforest. Biol. Lett. 10, 20140642 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 105.

    Poelman, E. H. & Dicke, M. Offering offspring as food to cannibals: oviposition strategies of Amazonian poison frogs (Dendrobates ventrimaculatus). Evol. Ecol. 21, 215–227 (2007).

    Article 

    Google Scholar 

  • 106.

    Caldwell, J. P. & de Araujo, M. C. Cannibalistic interactions resulting from indiscriminate predatory behavior in tadpoles of poison frogs (Anura: Dendrobatidae). Biotropica 30, 92–103 (1998).

    Article 

    Google Scholar 

  • 107.

    Gray, H. M., Summers, K. & Ibáñez, R. Kin discrimination in cannibalistic tadpoles of the Green Poison Frog, Dendrobates auratus (Anura, Dendrobatidae). Phyllomedusa (2009).

  • 108.

    Rojas, B. Strange parental decisions: fathers of the dyeing poison frog deposit their tadpoles in pools occupied by large cannibals. Behav. Ecol. Sociobiol. 68, 551–559 (2014).

    Article 

    Google Scholar 

  • 109.

    Schulte, L. M. & Mayer, M. Poison frog tadpoles seek parental transportation to escape their cannibalistic siblings. J. Zool. 303, 83–89, 12472 (2017).

  • 110.

    Ringler, E., Pašukonis, A., Hödl, W. & Ringler, M. Tadpole transport logistics in a Neotropical poison frog: indications for strategic planning and adaptive plasticity in anuran parental care. Front. Zool. 10, 67 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    Pröhl, H. Variation in male calling behaviour and relation to male mating success in the strawberry poison frog (Dendrobates pumilio). Ethology 109, 273–290 (2003).

    Article 

    Google Scholar 

  • 112.

    Summers, K. & Earn, D. J. The cost of polygyny and the evolution of female care in poison frogs. Biol. J. Linn. Soc. 66, 515–538 (1999).

    Article 

    Google Scholar 

  • 113.

    Ringler, E. et al. Flexible compensation of uniparental care: female poison frogs take over when males disappear. Behav. Ecol. 26, 1219–1225 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 114.

    Pyron, R. A. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 115.

    Streicher, J. W. et al. Evaluating methods for phylogenomic analyses, and a new phylogeny for a major frog clade (Hyloidea) based on 2214 loci. Mol. Phylogenet. Evol. 119, 128–143 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 116.

    Gilbert, J. D. Thrips domiciles protect larvae from desiccation in an arid environment. Behav. Ecol. 25, 1338–1346 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 117.

    Hime, P. M. et al. Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Syst. Biol. 70, 49–66 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 118.

    Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146–160 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 119.

    Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 120.

    Liu, Y., Day, L. B., Summers, K. & Burmeister, S. S. Learning to learn: advanced behavioural flexibility in a poison frog. Anim. Behav. 111, 167–172 (2016).

    Article 

    Google Scholar 

  • 121.

    Liu, Y., Day, L. B., Summers, K. & Burmeister, S. S. A cognitive map in a poison frog. J. Exp. Biol. 222, jeb97467 (2019).

    Article 

    Google Scholar 

  • 122.

    Liu, Y., Jones, C. D., Day, L. B., Summers, K. & Burmeister, S. S. Cognitive phenotype and differential gene expression in a hippocampal homologue in two species of frog. Integr. Comp Biol. 60, 1007–1023 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Collaborative management of the Grand Ethiopian Renaissance Dam increases economic benefits and resilience

    Dynamic carbon flux network of a diverse marine microbial community