in

Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide

  • 1.

    Myers, J. A. & LaManna, J. A. The promise and pitfalls of beta-diversity in ecology and conservation. J. Veg. Sci. 27, 1081–1083 (2016).

    Article 

    Google Scholar 

  • 2.

    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Xing, D. L. & He, F. L. Environmental filtering explains a U-shape latitudinal pattern in regional beta-deviation for eastern North American trees. Ecol. Lett. 22, 284–291 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Anderson, M. J. et al. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Article 

    Google Scholar 

  • 6.

    Menegotto, A., Dambros, C. S. & Netto, S. A. The scale-dependent effect of environmental filters on species turnover and nestedness in an estuarine benthic community. Ecology 100, e02721 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).

    Article 

    Google Scholar 

  • 8.

    Hubbell, S. P. The unified neutral theory of biodiversity and biogeography. (Princeton University Press, 2001).

  • 9.

    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).

    Article 

    Google Scholar 

  • 10.

    da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernandez, M. I. M. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers Distrib. 24, 1277–1290 (2018).

    Article 

    Google Scholar 

  • 11.

    Wang, X. G. et al. Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Glob. Ecol. Biogeogr. 27, 581–592 (2018).

    Article 

    Google Scholar 

  • 12.

    McFadden, I. R. et al. Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic beta diversity. Ecol. Lett. 22, 1126–1135 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Qian, H., Chen, S., Mao, L. & Ouyang, Z. Drivers of β‐diversity along latitudinal gradients revisited. Glob. Ecol. Biogeogr. 22, 659–670 (2013).

    Article 

    Google Scholar 

  • 14.

    Xu, W. B., Chen, G. K., Liu, C. R. & Ma, K. P. Latitudinal differences in species abundance distributions, rather than spatial aggregation, explain beta-diversity along latitudinal gradients. Glob. Ecol. Biogeogr. 24, 1170–1180 (2015).

    Article 

    Google Scholar 

  • 15.

    Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Griffiths, D. Connectivity and vagility determine beta diversity and nestedness in North American and European freshwater fish. J. Biogeogr. 44, 1723–1733 (2017).

    Article 

    Google Scholar 

  • 17.

    Soininen, J., Heino, J. & Wang, J. J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).

    Article 

    Google Scholar 

  • 18.

    LaManna, J. A., Belote, R. T., Burkle, L. A., Catano, C. P. & Myers, J. A. Negative density dependence mediates biodiversity-productivity relationships across scales. Nat. Ecol. Evol. 1, 1107–1115 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 20.

    Brundrett, M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77 (2009).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Gibert, A., Tozer, W. & Westoby, M. Plant performance response to eight different types of symbiosis. New Phytol. 222, 526–542 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Veresoglou, S. D., Rillig, M. C. & Johnson, D. Responsiveness of plants to mycorrhiza regulates coexistence. J. Ecol. 106, 1864–1875 (2018).

    Article 

    Google Scholar 

  • 23.

    Delavaux, C. S. et al. Mycorrhizal fungi influence global plant biogeography. Nat. Ecol. Evol. 3, 424–429 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Barcelo, M., van Bodegom, P. M. & Soudzilovskaia, N. A. Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. J. Ecol. 107, 2564–2573 (2019).

    Article 

    Google Scholar 

  • 25.

    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 571, E8–E8 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Johnson, D. J., Clay, K. & Phillips, R. P. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia 186, 195–204 (2018).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Hargreaves, A. L., Germain, R. M., Bontrager, M., Persi, J. & Angert, A. L. Local adaptation to biotic interactions: a meta-analysis across latitudes. Am. Nat. 195, 395–411 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Liu, X. B. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713–723 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Jacquemyn, H., De Kort, H., Vanden Broeck, A. & Brys, R. Immigrant and extrinsic hybrid seed inviability contribute to reproductive isolation between forest and dune ecotypes of Epipactis helleborine (Orchidaceae). Oikos 127, 73–84 (2018).

    Article 

    Google Scholar 

  • 31.

    Osborne, O. G. et al. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. New Phytol. 217, 1254–1266 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Myers, J. A. et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Jankowski, J. E., Ciecka, A. L., Meyer, N. Y. & Rabenold, K. N. Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. J. Anim. Ecol. 78, 315–327 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    McCarthy-Neumann, S. & Ibáñez, I. Tree range expansion may be enhanced by escape from negative plant–soil feedbacks. Ecology 93, 2637–2649 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Peay, K. G. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol., Evol. Syst. 47, 143–164 (2016).

    Article 

    Google Scholar 

  • 36.

    Wang, Z. H., Fang, J. Y., Tang, Z. Y. & Shi, L. Geographical patterns in the beta diversity of China’s woody plants: the influence of space, environment and range size. Ecography 35, 1092–1102 (2012).

    Article 

    Google Scholar 

  • 37.

    Liang, M. X. et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat. Commun. 11, 2636 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Segnitz, R. M., Russo, S. E., Davies, S. J. & Peay, K. G. Ectomycorrhizal fungi drive positive phylogenetic plant-soil feedbacks in a regionally dominant tropical plant family. Ecology 101, e03083 (2020).

  • 39.

    Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Brundrett, Mark, Murase, Gracia & K, B. Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can. J. Bot. 68, 551–578 (1990).

    Article 

    Google Scholar 

  • 41.

    Liu, Y. & He, F. L. Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. Funct. Ecol. 33, 1211–1222 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • 42.

    LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Crawford, K. M. et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22, 1274–1284 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Liu, X. B., Etienne, R. S., Liang, M. X., Wang, Y. F. & Yu, S. X. Experimental evidence for an intraspecific Janzen-Connell effect mediated by soil biota. Ecology 96, 662–671 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Chu, C. J. et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 22, 245–255 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Gavito, M. E. & Azcon-Aguilar, C. Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agr. Food Sci. 21, 2–11 (2012).

    Article 

    Google Scholar 

  • 48.

    Hetrick, B. D. & Bloom, J. The influence of temperature on colonization of winter wheat by vesicular-arbuscular mycorrhizal fungi. Mycologia 76, 953–956 (1984).

    Article 

    Google Scholar 

  • 49.

    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Condit, R. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. (Springer-Verlag andRG. Landes Company, 1998).

  • 51.

    Stillhard, J. et al. Stand inventory data from the 10-ha forest research plot in Uholka: 15 yr of primeval beech forest development. Ecology 100, e02845 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Bennett, J. R. & Gilbert, B. Contrasting beta diversity among regions: how do classical and multivariate approaches compare? Glob. Ecol. Biogeogr. 25, 368–377 (2016).

    Article 

    Google Scholar 

  • 54.

    Legendre, P. & De Caceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).

    Article 

    Google Scholar 

  • 56.

    De Cáceres, M. et al. The variation of tree beta diversity across a global network of forest plots. Glob. Ecol. Biogeogr. 21, 1191–1202 (2012).

    Article 

    Google Scholar 

  • 57.

    Yen, J. D. L., Fleishman, E., Fogarty, F. & Dobkin, D. S. Relating beta diversity of birds and butterflies in the Great Basin to spatial resolution, environmental variables and trait-based groups. Glob. Ecol. Biogeogr. 28, 328–340 (2019).

    Article 

    Google Scholar 

  • 58.

    Craven, D., Knight, T. M., Barton, K. E., Bialic-Murphy, L. & Chase, J. M. Dissecting macroecological and macroevolutionary patterns of forest biodiversity across the Hawaiian archipelago. Proc. Natl Acad. Sci. USA 116, 16436–16441 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Brundrett, M. & Tedersoo, L. Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytol. 221, 18–24 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. New Phytol. 227, 955–966 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Furniss, T. J., Larson, A. J. & Lutz, J. A. Reconciling niches and neutrality in a subalpine temperate forest. Ecosphere 8 (2017).

  • 62.

    Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Change Biol. 24, 5243–5258 (2018).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Legendre, P. et al. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90, 663–674 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Robert J., H. raster: Geographic data analysis and modeling. R package version 2.6-7 (2017). <https://CRAN.R-project.org/package=raster>.

  • 65.

    Alahuhta, J. et al. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 44, 1758–1769 (2017).

    Article 

    Google Scholar 

  • 66.

    Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Softw. 34, 1–24 (2010).

    Article 

    Google Scholar 

  • 67.

    Jump, A. S., Matyas, C. & Penuelas, J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24, 694–701 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2 (2018). <https://www.r-project.org>.

  • 69.

    Gilbert, B. & Bennett, J. R. Partitioning variation in ecological communities: do the numbers add up? J. Appl Ecol. 47, 1071–1082 (2010).

    Article 

    Google Scholar 

  • 70.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 
    Article 

    Google Scholar 

  • 71.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). <https://www.r-project.org/>.

  • 72.

    Baselga, A., Orme, D., Villeger, S., De Bortoli, J. & Leprieur, F. Partitioning beta diversity into turnover and nestedness components. R package version 1.5.0 (2019). <https://CRAN.R-project.org/package=betapart>.

  • 73.

    Harrell Jr, F. E. & Dupont, C. Hmisc: Harrell miscellaneous. R package version 4.2-3 (2019). <https://cran.r-project.org/package=Hmisc>.

  • 74.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News. 2, 18–22 (2002).

    Google Scholar 

  • 75.

    Archer, E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 2.1.6 (2018). <https://cran.r-project.org/package=rfPermute>.


  • Source: Ecology - nature.com

    A graduate student who goes to extremes

    MIT students and alumni “hack” Hong Kong Kowloon East