Wall, D. H., Bardgett, R. D. & Kelly, E. Biodiversity in the dark. Nat. Geosci. 3(5), 297–298 (2010).
Google Scholar
Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10(1), 1–3 (2019).
Koch, A. et al. Soil security: Solving the global soil crisis. Global Pol. 4(4), 434–441 (2013).
Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528(7580), 69–76 (2015).
Google Scholar
Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11(1), 1–13 (2020).
Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
Google Scholar
Zou, K., Thébault, E., Lacroix, G. & Barot, S. Interactions between the green and brown food web determine ecosystem functioning. Funct. Ecol. 30(8), 1454–1465 (2016).
Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).
de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. 110(35), 14296–14301 (2013).
Google Scholar
Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111 (2016).
Google Scholar
Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33(5), 1187–1192 (2019).
Google Scholar
Phillips, H. R., Heintz-Buschart, A. & Eisenhauer, N. Putting soil invertebrate diversity on the map. Mol. Ecol. 29(4), 655–657 (2020).
Google Scholar
El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Glob. Food Sec. 20, 132–144 (2019).
Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9(1), 2989 (2018).
Google Scholar
Eisenhauer, N. et al. Priorities for research in soil ecology. Pedobiologia 63, 1–7 (2017).
Google Scholar
Brose, U. & Scheu, S. Into darkness: Unravelling the structure of soil food webs. Oikos 123(10), 1153–1156 (2014).
Phillips, H. R. et al. Red list of a black box. Nat. Ecol. Evol. 1(4), 1–1 (2017).
Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94(879), 421–425 (1960).
Vidal, M. C. & Murphy, S. M. Bottom-up vs top-down effects on terrestrial insect herbivores: A meta-analysis. Ecol. Lett. 21(1), 138–150 (2018).
Google Scholar
Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. 111(14), 5266–5270 (2014).
Google Scholar
Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536(7617), 456–459 (2016).
Google Scholar
Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4(1), 1–23 (1973).
Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483(7388), 205–208 (2012).
Google Scholar
Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl. Acad. Sci. 112(22), 7033–7038 (2015).
Google Scholar
Maran, A. M. & Pelini, S. L. Predator contributions to belowground responses to warming. Ecosphere 7(9), e01457 (2016).
Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29(19), R1036–R1044 (2019).
Google Scholar
Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442(7100), 265–269 (2006).
Google Scholar
Murphy, S. M., Lewis, D. & Wimp, G. M. Predator population size structure alters consumption of prey from epigeic and grazing food webs. Oecologia 192(3), 791–799 (2020).
Google Scholar
Scheu, S. Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl. Ecol. 2, 3–13 (2001).
Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304(5677), 1629–1633 (2004).
Google Scholar
de Vries, F. T. & Wallenstein, M. D. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. J. Ecol. 105(4), 913–920 (2017).
Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. Proc. Natl. Acad. Sci. 108(43), 17720–17725 (2011).
Google Scholar
Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47(1), 561–594 (2002).
Google Scholar
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5(10), eaax0121 (2019).
Google Scholar
Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115(33), E7863–E7870 (2018).
Google Scholar
Johnson, S. N. et al. New frontiers in belowground ecology for plant protection from root-feeding insects. Appl. Soil. Ecol. 108, 96–107 (2016).
Veen, C. et al. Applying the aboveground-belowground interaction concept in agriculture: Spatio-temporal scales matter. Front. Ecol. Evol. 7, 300 (2019).
Birkhofer, K., Wise, D. H. & Scheu, S. Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117(4), 494–500 (2008).
Birkhofer, K. et al. Organic farming affects the biological control of hemipteran pests and yields in spring barley independent of landscape complexity. Landsc. Ecol. 31(3), 567–579 (2016).
van der Putten, W. H. et al. Empirical and theoretical challenges in aboveground–belowground ecology. Oecologia 161(1), 1–14 (2009).
Google Scholar
Kleijn, D. et al. Ecological intensification: Bridging the gap between science and practice. Trends Ecol. Evol. 34(2), 154–166 (2019).
Google Scholar
Bender, S. F., Wagg, C. & van der Heijden, M. G. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31(6), 440–452 (2016).
Google Scholar
Gagic, V. et al. Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol. Lett. 20(11), 1427–1436 (2017).
Google Scholar
Briones, M. J. The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Front. Environ. Sci. 6, 149 (2018).
Kaya, H. K. & Gaugler, R. Entomopathogenic nematodes. Annu. Rev. Entomol. 38(1), 181–206 (1993).
Ferris, H. & Tuomisto, H. Unearthing the role of biological diversity in soil health. Soil Biol. Biochem. 85, 101–109 (2015).
Google Scholar
Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).
Google Scholar
Bender, S. F. & van der Heijden, M. G. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52(1), 228–239 (2015).
Google Scholar
De Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276–280 (2012).
Google Scholar
Bastida, F. et al. Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Mol. Ecol. 29(4), 752–761 (2020).
Google Scholar
Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).
Polis, G. A. Complex trophic interactions in deserts: An empirical critique of food-web theory. Am. Nat. 138(1), 123–155 (1991).
Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147(5), 813–846 (1996).
Lavelle, P. et al. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Sci. 181(3/4), 91–109 (2016).
Google Scholar
Nielsen, U. N. et al. The enigma of soil animal species diversity revisited: The role of small-scale heterogeneity. PLoS ONE 5(7), e11567 (2010).
Google Scholar
Heinen, R., van der Sluijs, M., Biere, A., Harvey, J. A. & Bezemer, T. M. Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects. J. Ecol. 106(3), 1217–1229 (2018).
Ramirez, K. S., Geisen, S., Morriën, E., Snoek, B. L. & van der Putten, W. H. Network analyses can advance above-belowground ecology. Trends Plant Sci. 23(9), 759–768 (2018).
Google Scholar
Boyer, S., Snyder, W. E. & Wratten, S. D. Molecular and isotopic approaches to food webs in agroecosystems. Food Webs 9, 1–3 (2016).
Casey, J. M. et al. Reconstructing hyperdiverse food webs: Gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10(8), 1157–1170 (2019).
Choate, B. A. & Lundgren, J. G. Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis. Crop Prot. 77, 110–118 (2015).
Furlong, M. J. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests. Insect Sci. 22(1), 6–19 (2015).
Google Scholar
Eitzinger, B., Rall, B. C., Traugott, M. & Scheu, S. Testing the validity of functional response models using molecular gut content analysis for prey choice in soil predators. Oikos 127(7), 915–926 (2018).
Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6(2), 343–351 (2012).
Google Scholar
Morriën, E. Understanding soil food web dynamics, how close do we get?. Soil Biol. Biochem. 102, 10–13 (2016).
Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the complex structure of forest soil food webs: Higher omnivory and more trophic levels. Oikos 123(10), 1157–1172 (2014).
Toscano, B. J., Hin, V. & Rudolf, V. H. Cannibalism and intraguild predation community dynamics: Coexistence, competitive exclusion, and the loss of alternative stable states. Am. Nat. 190(5), 617–630 (2017).
Google Scholar
Coleman, D. C. & Wall, D. H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. Soil Microbiol. Ecol. Biochem. 4, 111–149 (2015).
Brussaard, L. Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570 (1997).
Briar, S. S. et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905–914 (2011).
Google Scholar
Oelbermann, K. & Scheu, S. Trophic guilds of generalist feeders in soil animal communities as indicated by stable isotope analysis (15N/14N). Bull. Entomol. Res. 100(5), 511 (2010).
Google Scholar
Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).
Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).
Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6(1), 1–10 (2015).
Ruf, A. A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils. Appl. Soil. Ecol. 9(1–3), 447–452 (1998).
Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links?. Ecology 84(8), 2042–2050 (2003).
Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169(4), 587–596 (2017).
Google Scholar
Barnes, A. D. et al. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33(3), 186–197 (2018).
Google Scholar
Heinen, R., Biere, A., Harvey, J. A. & Bezemer, T. M. Effects of soil organisms on aboveground plant-insect interactions in the field: Patterns, mechanisms and the role of methodology. Front. Ecol. Evol. 6, 106 (2018).
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366(6467), 886–890 (2019).
Google Scholar
Wardle, D. A., Hyodo, F., Bardgett, R. D., Yeates, G. W. & Nilsson, M. C. Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest. Ecology 92(3), 645–656 (2011).
Google Scholar
Preisser, E. L. & Strong, D. R. Climate affects predator control of an herbivore outbreak. Am. Nat. 163(5), 754–762 (2004).
Google Scholar
Hamilton, J. et al. Elevated atmospheric CO2 alters the arthropod community in a forest understory. Acta Oecol. 43, 80–85 (2012).
Google Scholar
Zaller, J. G. et al. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Front. Environ. Sci. 2, 44 (2014).
Koltz, A. M., Classen, A. T. & Wright, J. P. Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra. Proc. Natl. Acad. Sci. 115(32), E7541–E7549 (2018).
Google Scholar
Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105(3), 801–815 (2017).
Garratt, M. P. et al. Enhancing soil organic matter as a route to the ecological intensification of European arable systems. Ecosystems 21(7), 1404–1415 (2018).
Google Scholar
Smith-Ramesh, L. M. Predators in the plant–soil feedback loop: Aboveground plant-associated predators may alter the outcome of plant–soil interactions. Ecol. Lett. 21(5), 646–654 (2018).
Google Scholar
Gurr, G. M., Wratten, S. D., Landis, D. A. & You, M. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol. 62, 91–109 (2017).
Google Scholar
Rypstra, A. L., Carter, P. E., Balfour, R. A. & Marshall, S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27, 371–377 (1999).
Von Berg, K., Thies, C., Tscharntke, T. & Scheu, S. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space. Oecologia 163(4), 1033–1042 (2010).
Google Scholar
Rowen, E., Tooker, J. F. & Blubaugh, C. K. Managing fertility with animal waste to promote arthropod pest suppression. Biol. Control 134, 130–140 (2019).
Perović, D. J. et al. Managing biological control services through multi-trophic trait interactions: Review and guidelines for implementation at local and landscape scales. Biol. Rev. 93(1), 306–321 (2018).
Google Scholar
Roger-Estrade, J., Anger, C., Bertrand, M. & Richard, G. Tillage and soil ecology: Partners for sustainable agriculture. Soil Tillage Res. 111(1), 33–40 (2010).
Dias, T., Dukes, A. & Antunes, P. M. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J. Sci. Food Agric. 95(3), 447–454 (2015).
Google Scholar
Tamburini, G., De Simone, S., Sigura, M., Boscutti, F. & Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53(1), 233–241 (2016).
Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1(8), 441–446 (2018).
Swift, M. J., Heal, O. W., Anderson, J. M. & Anderson, J. M. Decomposition in Terrestrial Ecosystems Vol. 5 (University of California Press, 1979).
van Straalen, N. M., Butovsky, R. O., Pokarzhevskii, A. D., Zaitsev, A. S. & Verhoef, S. C. Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia 45(5), 451–466 (2001).
Birkhofer, K. et al. Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecol. Evol. 7(6), 1942–1953 (2017).
Google Scholar
Potapov, A. M., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94(1), 37–59 (2019).
Source: Ecology - nature.com