in

Artefactual depiction of predator–prey trophic linkages in global soils

  • 1.

    Wall, D. H., Bardgett, R. D. & Kelly, E. Biodiversity in the dark. Nat. Geosci. 3(5), 297–298 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 2.

    Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10(1), 1–3 (2019).

    Google Scholar 

  • 3.

    Koch, A. et al. Soil security: Solving the global soil crisis. Global Pol. 4(4), 434–441 (2013).

    Google Scholar 

  • 4.

    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528(7580), 69–76 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11(1), 1–13 (2020).

    Google Scholar 

  • 6.

    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Zou, K., Thébault, E., Lacroix, G. & Barot, S. Interactions between the green and brown food web determine ecosystem functioning. Funct. Ecol. 30(8), 1454–1465 (2016).

    Google Scholar 

  • 8.

    Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).

    Google Scholar 

  • 9.

    de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. 110(35), 14296–14301 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33(5), 1187–1192 (2019).

    PubMed 

    Google Scholar 

  • 12.

    Phillips, H. R., Heintz-Buschart, A. & Eisenhauer, N. Putting soil invertebrate diversity on the map. Mol. Ecol. 29(4), 655–657 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Glob. Food Sec. 20, 132–144 (2019).

    Google Scholar 

  • 14.

    Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9(1), 2989 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Eisenhauer, N. et al. Priorities for research in soil ecology. Pedobiologia 63, 1–7 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Brose, U. & Scheu, S. Into darkness: Unravelling the structure of soil food webs. Oikos 123(10), 1153–1156 (2014).

    Google Scholar 

  • 17.

    Phillips, H. R. et al. Red list of a black box. Nat. Ecol. Evol. 1(4), 1–1 (2017).

    Google Scholar 

  • 18.

    Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94(879), 421–425 (1960).

    Google Scholar 

  • 19.

    Vidal, M. C. & Murphy, S. M. Bottom-up vs top-down effects on terrestrial insect herbivores: A meta-analysis. Ecol. Lett. 21(1), 138–150 (2018).

    PubMed 

    Google Scholar 

  • 20.

    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. 111(14), 5266–5270 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536(7617), 456–459 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4(1), 1–23 (1973).

    Google Scholar 

  • 23.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483(7388), 205–208 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl. Acad. Sci. 112(22), 7033–7038 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Maran, A. M. & Pelini, S. L. Predator contributions to belowground responses to warming. Ecosphere 7(9), e01457 (2016).

    Google Scholar 

  • 26.

    Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29(19), R1036–R1044 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442(7100), 265–269 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Murphy, S. M., Lewis, D. & Wimp, G. M. Predator population size structure alters consumption of prey from epigeic and grazing food webs. Oecologia 192(3), 791–799 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • 29.

    Scheu, S. Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl. Ecol. 2, 3–13 (2001).

    Google Scholar 

  • 30.

    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304(5677), 1629–1633 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 31.

    de Vries, F. T. & Wallenstein, M. D. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. J. Ecol. 105(4), 913–920 (2017).

    Google Scholar 

  • 32.

    Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. Proc. Natl. Acad. Sci. 108(43), 17720–17725 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47(1), 561–594 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5(10), eaax0121 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115(33), E7863–E7870 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Johnson, S. N. et al. New frontiers in belowground ecology for plant protection from root-feeding insects. Appl. Soil. Ecol. 108, 96–107 (2016).

    Google Scholar 

  • 37.

    Veen, C. et al. Applying the aboveground-belowground interaction concept in agriculture: Spatio-temporal scales matter. Front. Ecol. Evol. 7, 300 (2019).

    Google Scholar 

  • 38.

    Birkhofer, K., Wise, D. H. & Scheu, S. Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117(4), 494–500 (2008).

    Google Scholar 

  • 39.

    Birkhofer, K. et al. Organic farming affects the biological control of hemipteran pests and yields in spring barley independent of landscape complexity. Landsc. Ecol. 31(3), 567–579 (2016).

    Google Scholar 

  • 40.

    van der Putten, W. H. et al. Empirical and theoretical challenges in aboveground–belowground ecology. Oecologia 161(1), 1–14 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Kleijn, D. et al. Ecological intensification: Bridging the gap between science and practice. Trends Ecol. Evol. 34(2), 154–166 (2019).

    PubMed 

    Google Scholar 

  • 42.

    Bender, S. F., Wagg, C. & van der Heijden, M. G. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31(6), 440–452 (2016).

    PubMed 

    Google Scholar 

  • 43.

    Gagic, V. et al. Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol. Lett. 20(11), 1427–1436 (2017).

    PubMed 

    Google Scholar 

  • 44.

    Briones, M. J. The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Front. Environ. Sci. 6, 149 (2018).

    Google Scholar 

  • 45.

    Kaya, H. K. & Gaugler, R. Entomopathogenic nematodes. Annu. Rev. Entomol. 38(1), 181–206 (1993).

    Google Scholar 

  • 46.

    Ferris, H. & Tuomisto, H. Unearthing the role of biological diversity in soil health. Soil Biol. Biochem. 85, 101–109 (2015).

    CAS 

    Google Scholar 

  • 47.

    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).

    ADS 

    Google Scholar 

  • 48.

    Bender, S. F. & van der Heijden, M. G. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52(1), 228–239 (2015).

    CAS 

    Google Scholar 

  • 49.

    De Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276–280 (2012).

    ADS 

    Google Scholar 

  • 50.

    Bastida, F. et al. Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Mol. Ecol. 29(4), 752–761 (2020).

    PubMed 

    Google Scholar 

  • 51.

    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).

    Google Scholar 

  • 52.

    Polis, G. A. Complex trophic interactions in deserts: An empirical critique of food-web theory. Am. Nat. 138(1), 123–155 (1991).

    Google Scholar 

  • 53.

    Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147(5), 813–846 (1996).

    Google Scholar 

  • 54.

    Lavelle, P. et al. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Sci. 181(3/4), 91–109 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 55.

    Nielsen, U. N. et al. The enigma of soil animal species diversity revisited: The role of small-scale heterogeneity. PLoS ONE 5(7), e11567 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Heinen, R., van der Sluijs, M., Biere, A., Harvey, J. A. & Bezemer, T. M. Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects. J. Ecol. 106(3), 1217–1229 (2018).

    Google Scholar 

  • 57.

    Ramirez, K. S., Geisen, S., Morriën, E., Snoek, B. L. & van der Putten, W. H. Network analyses can advance above-belowground ecology. Trends Plant Sci. 23(9), 759–768 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Boyer, S., Snyder, W. E. & Wratten, S. D. Molecular and isotopic approaches to food webs in agroecosystems. Food Webs 9, 1–3 (2016).

    Google Scholar 

  • 59.

    Casey, J. M. et al. Reconstructing hyperdiverse food webs: Gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10(8), 1157–1170 (2019).

    Google Scholar 

  • 60.

    Choate, B. A. & Lundgren, J. G. Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis. Crop Prot. 77, 110–118 (2015).

    Google Scholar 

  • 61.

    Furlong, M. J. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests. Insect Sci. 22(1), 6–19 (2015).

    PubMed 

    Google Scholar 

  • 62.

    Eitzinger, B., Rall, B. C., Traugott, M. & Scheu, S. Testing the validity of functional response models using molecular gut content analysis for prey choice in soil predators. Oikos 127(7), 915–926 (2018).

    Google Scholar 

  • 63.

    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6(2), 343–351 (2012).

    PubMed 

    Google Scholar 

  • 64.

    Morriën, E. Understanding soil food web dynamics, how close do we get?. Soil Biol. Biochem. 102, 10–13 (2016).

    Google Scholar 

  • 65.

    Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the complex structure of forest soil food webs: Higher omnivory and more trophic levels. Oikos 123(10), 1157–1172 (2014).

    Google Scholar 

  • 66.

    Toscano, B. J., Hin, V. & Rudolf, V. H. Cannibalism and intraguild predation community dynamics: Coexistence, competitive exclusion, and the loss of alternative stable states. Am. Nat. 190(5), 617–630 (2017).

    PubMed 

    Google Scholar 

  • 67.

    Coleman, D. C. & Wall, D. H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. Soil Microbiol. Ecol. Biochem. 4, 111–149 (2015).

    Google Scholar 

  • 68.

    Brussaard, L. Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570 (1997).

    Google Scholar 

  • 69.

    Briar, S. S. et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905–914 (2011).

    CAS 

    Google Scholar 

  • 70.

    Oelbermann, K. & Scheu, S. Trophic guilds of generalist feeders in soil animal communities as indicated by stable isotope analysis (15N/14N). Bull. Entomol. Res. 100(5), 511 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).

    Google Scholar 

  • 72.

    Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).

    Google Scholar 

  • 73.

    Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6(1), 1–10 (2015).

    Google Scholar 

  • 74.

    Ruf, A. A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils. Appl. Soil. Ecol. 9(1–3), 447–452 (1998).

    Google Scholar 

  • 75.

    Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links?. Ecology 84(8), 2042–2050 (2003).

    Google Scholar 

  • 76.

    Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169(4), 587–596 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Barnes, A. D. et al. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33(3), 186–197 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Heinen, R., Biere, A., Harvey, J. A. & Bezemer, T. M. Effects of soil organisms on aboveground plant-insect interactions in the field: Patterns, mechanisms and the role of methodology. Front. Ecol. Evol. 6, 106 (2018).

    Google Scholar 

  • 79.

    Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366(6467), 886–890 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Wardle, D. A., Hyodo, F., Bardgett, R. D., Yeates, G. W. & Nilsson, M. C. Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest. Ecology 92(3), 645–656 (2011).

    PubMed 

    Google Scholar 

  • 81.

    Preisser, E. L. & Strong, D. R. Climate affects predator control of an herbivore outbreak. Am. Nat. 163(5), 754–762 (2004).

    PubMed 

    Google Scholar 

  • 82.

    Hamilton, J. et al. Elevated atmospheric CO2 alters the arthropod community in a forest understory. Acta Oecol. 43, 80–85 (2012).

    ADS 

    Google Scholar 

  • 83.

    Zaller, J. G. et al. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Front. Environ. Sci. 2, 44 (2014).

    Google Scholar 

  • 84.

    Koltz, A. M., Classen, A. T. & Wright, J. P. Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra. Proc. Natl. Acad. Sci. 115(32), E7541–E7549 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105(3), 801–815 (2017).

    Google Scholar 

  • 86.

    Garratt, M. P. et al. Enhancing soil organic matter as a route to the ecological intensification of European arable systems. Ecosystems 21(7), 1404–1415 (2018).

    CAS 

    Google Scholar 

  • 87.

    Smith-Ramesh, L. M. Predators in the plant–soil feedback loop: Aboveground plant-associated predators may alter the outcome of plant–soil interactions. Ecol. Lett. 21(5), 646–654 (2018).

    PubMed 

    Google Scholar 

  • 88.

    Gurr, G. M., Wratten, S. D., Landis, D. A. & You, M. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol. 62, 91–109 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 89.

    Rypstra, A. L., Carter, P. E., Balfour, R. A. & Marshall, S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27, 371–377 (1999).

    Google Scholar 

  • 90.

    Von Berg, K., Thies, C., Tscharntke, T. & Scheu, S. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space. Oecologia 163(4), 1033–1042 (2010).

    ADS 

    Google Scholar 

  • 91.

    Rowen, E., Tooker, J. F. & Blubaugh, C. K. Managing fertility with animal waste to promote arthropod pest suppression. Biol. Control 134, 130–140 (2019).

    Google Scholar 

  • 92.

    Perović, D. J. et al. Managing biological control services through multi-trophic trait interactions: Review and guidelines for implementation at local and landscape scales. Biol. Rev. 93(1), 306–321 (2018).

    PubMed 

    Google Scholar 

  • 93.

    Roger-Estrade, J., Anger, C., Bertrand, M. & Richard, G. Tillage and soil ecology: Partners for sustainable agriculture. Soil Tillage Res. 111(1), 33–40 (2010).

    Google Scholar 

  • 94.

    Dias, T., Dukes, A. & Antunes, P. M. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J. Sci. Food Agric. 95(3), 447–454 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 95.

    Tamburini, G., De Simone, S., Sigura, M., Boscutti, F. & Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53(1), 233–241 (2016).

    Google Scholar 

  • 96.

    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1(8), 441–446 (2018).

    Google Scholar 

  • 97.

    Swift, M. J., Heal, O. W., Anderson, J. M. & Anderson, J. M. Decomposition in Terrestrial Ecosystems Vol. 5 (University of California Press, 1979).

    Google Scholar 

  • 98.

    van Straalen, N. M., Butovsky, R. O., Pokarzhevskii, A. D., Zaitsev, A. S. & Verhoef, S. C. Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia 45(5), 451–466 (2001).

    Google Scholar 

  • 99.

    Birkhofer, K. et al. Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecol. Evol. 7(6), 1942–1953 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Potapov, A. M., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94(1), 37–59 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    The polar night shift: seasonal dynamics and drivers of Arctic Ocean microbiomes revealed by autonomous sampling

    Q&A: Can the world change course on climate?