in

Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators

[adace-ad id="91168"]
  • 1.

    Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. 88, 912–927 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).

    Article 

    Google Scholar 

  • 3.

    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Kyba, C. C. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Gaston, K. J., Gaston, S., Bennie, J. & Hopkins, J. Benefits and costs of artificial nighttime lighting of the environment. Environ. Rev. 23, 14–23 (2014).

    Article 

    Google Scholar 

  • 6.

    Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5, 74–81 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. R. Soc. B Biol. Sci. 280, 20123017 (2013).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Owens, A. C. S. & Lewis, S. M. The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecol. Evol. 8, 11337–11358 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Becker, A., Whitfield, A. K., Cowley, P. D., Järnegren, J. & Næsje, T. F. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. J. Appl. Ecol. 50, 43–50 (2013).

    Article 

    Google Scholar 

  • 10.

    van Grunsven, R. H. A. et al. Experimental light at night has a negative long-term impact on macro-moth populations. Curr. Biol. 30, R694–R695 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 11.

    Macgregor, C. J., Evans, D. M., Fox, R. & Pocock, M. J. O. The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Change Biol. 23, 697–707 (2017).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Lewis, S. M. et al. A global perspective on firefly extinction threats. BioScience 70, 157–167 (2020).

    Article 

    Google Scholar 

  • 14.

    Johnsen, S. et al. Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. J. Exp. Biol. 209, 789–800 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant. Ecosphere 10, e02550 (2019).

    Article 

    Google Scholar 

  • 16.

    Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 19966 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. S125–S153 (1992).

  • 18.

    Davies, T. W., Bennie, J., Inger, R., de Ibarra, N. H. & Gaston, K. J. Artificial light pollution: are shifting spectral signatures changing the balance of species interactions? Glob. Change Biol. 19, 1417–1423 (2013).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Lamphar, H. A. S. & Kocifaj, M. Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions. PLoS ONE 8, e56563 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Longcore, T. et al. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 511–521 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Seymoure, B. M., Linares, C. & White, J. Connecting spectral radiometry of anthropogenic light sources to the visual ecology of organisms. J. Zool. 308, 93–110 (2019).

    Article 

    Google Scholar 

  • 22.

    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. B Biol. Sci. 265, 351–358 (1998).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Kelber, A., Yovanovich, C. & Olsson, P. Thresholds and noise limitations of colour vision in dim light. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160065 (2017).

    Article 

    Google Scholar 

  • 24.

    Olsson, P., Lind, O. & Kelber, A. Bird colour vision: behavioural thresholds reveal receptor noise. J. Exp. Biol. 218, 184–193 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Walton, R. E., Sayer, C. D., Bennion, H. & Axmacher, J. C. Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biol. Lett. 16, 20190877 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Kelber, A., Balkenius, A. & Warrant, E. J. Scotopic colour vision in nocturnal hawkmoths. Nature 419, 922–925 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Cook, L. M., Grant, B. S., Saccheri, I. J. & Mallet, J. Selective bird predation on the peppered moth: the last experiment of Michael Majerus. Biol. Lett. 8, 609–612 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Svensson, M. G. E., Rydell, J. & Töve, J. Deep flowers for long tongues. Trends Ecol. Evol. 13, 460 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Dominoni, D. M. The effects of light pollution on biological rhythms of birds: an integrated, mechanistic perspective. J. Ornithol. 156, 409–418 (2015).

    Article 

    Google Scholar 

  • 31.

    Russ, A., Rüger, A. & Klenke, R. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. J. Ornithol. 156, 123–131 (2015).

    Article 

    Google Scholar 

  • 32.

    Hart, N. S., Partridge, J. C., Cuthill, I. C. & Bennett, A. T. Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). J. Comp. Physiol. A 186, 375–387 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Wink, M. & Theile, V. Alkaloid tolerance in Manduca sexta and phylogenetically related sphingids (Lepidoptera: Sphingidae). Chemoecology 12, 29–46 (2002).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Hundsdoerfer, A. K., Tshibangu, J. N., Wetterauer, B. & Wink, M. Sequestration of phorbol esters by aposematic larvae of Hyles euphorbiae (Lepidoptera: Sphingidae)? Chemoecology 15, 261–267 (2005).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Petschenka, G. & Dobler, S. Target-site sensitivity in a specialized herbivore towards major toxic compounds of its host plant: the Na+ K+-ATPase of the oleander hawk moth (Daphnisnerii) is highly susceptible to cardenolides. Chemoecology 19, 235 (2009).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Vallin, A., Jakobsson, S. & Wiklund, C. “An eye for an eye”?—on the generality of the intimidating quality of eyespots in a butterfly and a hawkmoth. Behav. Ecol. Sociobiol. 61, 1419–1424 (2007).

    Article 

    Google Scholar 

  • 37.

    Barber, J. R. & Kawahara, A. Y. Hawkmoths produce anti-bat ultrasound. Biol. Lett. 9, 20130161 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K. & Spottiswoode, C. N. Improvement of individual camouflage through background choice in ground-nesting birds. Nat. Ecol. Evol. 1, 1325 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Kang, C., Moon, J.-Y., Lee, S.-I. & Jablonski, P. G. Moths use multimodal sensory information to adopt adaptive resting orientations. Biol. J. Linn. Soc. 111, 900–904 (2014).

    Article 

    Google Scholar 

  • 40.

    Kang, C., Stevens, M., Moon, J., Lee, S.-I. & Jablonski, P. G. Camouflage through behavior in moths: the role of background matching and disruptive coloration. Behav. Ecol. 26, 45–54 (2014).

    Article 

    Google Scholar 

  • 41.

    Falchi, F., Cinzano, P., Elvidge, C. D., Keith, D. M. & Haim, A. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 92, 2714–2722 (2011).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Gaston, K. J., Davies, T. W., Bennie, J. & Hopkins, J. Reducing the ecological consequences of night-time light pollution: options and developments. J. Appl. Ecol. 49, 1256–1266 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Longcore, T. et al. Tuning the White Light Spectrum of Light Emitting Diode Lamps to Reduce Attraction of Nocturnal Arthropods. Phil. Trans. B 370 (1667): 20140125 (2015).

  • 44.

    van Langevelde, F., Ettema, J. A., Donners, M., WallisDeVries, M. F. & Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144, 2274–2281 (2011).

    Article 

    Google Scholar 

  • 45.

    Somers-Yeates, R., Hodgson, D., McGregor, P. K., Spalding, A. & Ffrench-Constant, R. H. Shedding light on moths: shorter wavelengths attract noctuids more than geometrids. Biol. Lett. 9, 20130376 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Donners, M. et al. Colors of attraction: modeling insect flight to light behavior. J. Exp. Zoo. A 329, 434–440 (2018).

    Article 

    Google Scholar 

  • 47.

    Jones, T. M., Durrant, J., Michaelides, E. B. & Green, M. P. Melatonin: a possible link between the presence of artificial light at night and reductions in biological fitness. Philos. Trans. R. Soc. Lond. B 370, 20140122 (2015).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Arnold, S. E., Faruq, S., Savolainen, V., McOwan, P. W. & Chittka, L. FReD: the floral reflectance database—a web portal for analyses of flower colour. PLoS ONE 5, e14287 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2013).

  • 51.

    Gomez, D. et al. The intensity threshold of colour vision in a passerine bird, the blue tit (Cyanistes caeruleus). J. Exp. Biol. 217, 3775–3778 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. (2014).

  • 53.

    Maia, R. & White, T. E. Comparing colors using visual models. Behav. Ecol. 29, 649–659 (2018).

    Article 

    Google Scholar 

  • 54.

    Maia, R., Gruson, H., Endler, J. A. & White, T. E. pavo 2: New tools for the spectral and spatial analysis of colour in r. Methods Ecol. Evol. 10, 1097–1107 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Empirical estimate of forestation-induced precipitation changes in Europe

    Pathfinder satellite paves way for constellation of tropical-storm observers