in

Assessing biophysical and socio-economic impacts of climate change on regional avian biodiversity

  • 1.

    Díaz, S. et al. (eds) IPBES: Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, Bonn, 2019).

    Google Scholar 

  • 2.

    Struebig, M. J. et al. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Curr. Biol. 25, 372–378 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    McMichael, A. J., Woodruff, R. E. & Hales, S. Climate change and human health: present and future risks. Lancet 367, 859–869 (2006).

    PubMed  Article  Google Scholar 

  • 4.

    Roson, R. & Sartori, M. Estimation of climate change damage functions for 140 regions in the GTAP 9 database. J. Glob. Econ. Anal. 1, 78–115 (2016).

    Article  Google Scholar 

  • 5.

    Tol, R. S. J. Who Benefits and Who Loses from Climate Change? In Handbook of Climate Change Mitigation and Adaptation (eds Chen, W.-Y. et al.) 1–12 (Springer, New York, 2014).

    Google Scholar 

  • 6.

    Veldkamp, A. & Fresco, L. O. CLUE: a conceptual model to study the conversion of land use and its effects. Ecol. Model. 85, 253–270 (1996).

    Article  Google Scholar 

  • 7.

    Verburg, P. H. & Overmars, K. P. Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 24, 1167–1181 (2009).

    Article  Google Scholar 

  • 8.

    Mantyka-pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).

    Article  Google Scholar 

  • 9.

    Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5, 317–335 (2014).

    Article  Google Scholar 

  • 10.

    Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).

    PubMed  Article  Google Scholar 

  • 11.

    Brodie, J. F. Synergistic effects of climate change and agricultural land use on mammals. Front. Ecol. Environ. 14, 20–26 (2016).

    Article  Google Scholar 

  • 12.

    Brambilla, M., Pedrini, P., Rolando, A. & Chamberlain, D. E. Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. J. Biogeogr. 43, 2299–2309 (2016).

    Article  Google Scholar 

  • 13.

    Ferrier, S. et al. (eds) IPBES. Summary for Policymakers of the Methodological Assessment of Scenarios and Models of Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, Bonn, 2016).

    Google Scholar 

  • 14.

    Leclere, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).

    Article  Google Scholar 

  • 16.

    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    ADS  Article  Google Scholar 

  • 17.

    Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Ha, P. V., Kompas, T., Thi, H., Nguyen, M. & Hoang, C. Building a better trade model to determine local effects : a regional and intertemporal GTAP model. Econ. Model. 67, 102–113 (2016).

    Google Scholar 

  • 19.

    Van Ha, P. & Kompas, T. Solving intertemporal CGE models in parallel using a singly bordered block diagonal ordering technique. Econ. Model. 52, 3–12 (2016).

    Article  Google Scholar 

  • 20.

    Fuchs, R., Herold, M., Verburg, P. H. & Clevers, J. G. P. W. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 10, 1543–1559 (2013).

    ADS  Article  Google Scholar 

  • 21.

    Lawson, C. R., Hodgson, J. A., Wilson, R. J. & Richards, S. A. Prevalence, thresholds and the performance of presence-absence models. Methods Ecol. Evol. 5, 54–64 (2014).

    Article  Google Scholar 

  • 22.

    Wintle, B. A., Elith, J. & Potts, J. M. Fauna habitat modelling and mapping: a review and case study in the lower hunter central coast region of NSW. Austral. Ecol. 30, 719–738 (2005).

    Article  Google Scholar 

  • 23.

    Wintle, B. A. et al. Ecological–economic optimization of biodiversity conservation under climate change. Nat. Clim. Change 1, 355–359 (2011).

    ADS  Article  Google Scholar 

  • 24.

    Thomas, C. D. Climate change and extinction risk. Nature 430, 25 (2004).

    ADS  Article  CAS  Google Scholar 

  • 25.

    Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507 (2012).

    Article  Google Scholar 

  • 26.

    Baldwin, R. Use of maximum entropy modeling in wildlife research. Entropy 11, 854–866 (2009).

    ADS  Article  Google Scholar 

  • 27.

    R Development Core Team. R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing. https://www.R-project.org/ (2020). Accessed 3 September 2018.

  • 28.

    Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistics Database (2017).

  • 29.

    IUCN. The IUCN Red List of Threatened Species. Version 2018-2 (2018).

  • 30.

    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    PubMed  Article  Google Scholar 

  • 31.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 32.

    Gillings, S., Balmer, D. E. & Fuller, R. J. Directionality of recent bird distribution shifts and climate change in Great Britain. Glob. Change Biol. 21, 2155–2168 (2015).

    ADS  Article  Google Scholar 

  • 33.

    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 34.

    van Vuuren, D. P. & Carter, T. R. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim. Change 122, 415–429 (2014).

    ADS  Article  Google Scholar 

  • 35.

    Bryan, B. A. et al. Land-use and sustainability under intersecting global change and domestic policy scenarios: trajectories for Australia to 2050. Glob. Environ. Change 38, 130–152 (2016).

    Article  Google Scholar 

  • 36.

    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).

    Article  Google Scholar 

  • 37.

    Hernandez, P. A., Graham, C., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).

    Article  Google Scholar 

  • 38.

    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).

    Article  Google Scholar 

  • 39.

    Guisan, A. et al. Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20, 501–511 (2006).

    PubMed  Article  Google Scholar 

  • 40.

    Taylor, P. D., Fahrig, L., Henein, K. & Merriam, G. Connectivity Is a vital element of landscape structure. Oikos 68, 571 (1993).

    Article  Google Scholar 

  • 41.

    Gordon, A. et al. The use of dynamic landscape metapopulation models for forest management: a case study of the red-backed salamander. Can. J. For. Res. 42, 1091–1106 (2012).

    Article  Google Scholar 

  • 42.

    Cadenhead, N. C. R., Kearney, M. R., Moore, D., Mcalpin, S. & Wintle, B. A. Climate and fire scenario uncertainty dominate the evaluation of options for conserving the great desert skink. Conserv. Lett. 9, 181–190 (2015).

    Article  Google Scholar 

  • 43.

    UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. https://www.refworld.org/docid/57b6e3e44.html (2015). Accessed 22 November 2018.

  • 44.

    BirdLife International. Country profile: Vietnam. http://www.birdlife.org/datazone/country/vietnam (2018). Accessed 21 October 2018.

  • 45.

    BirdLife International. Country Profile: Australia. http://www.birdlife.org/datazone/country/australia (2018). Accessed 21 October 2018.

  • 46.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    ADS  Article  Google Scholar 

  • 47.

    Hijmans, R., Cameron, S., Parra, J., Jones, P. & Jarvis, A. WORLDCLIM—A Set of Global Climate Layers (Climate Grids), Version 1.4.

  • 48.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS  Article  Google Scholar 

  • 49.

    Hertel, T. Global Trade Analysis: Modeling and Applications (Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, West Lafayette, 1997).

    Google Scholar 

  • 50.

    Aguiar, A., Narayanan, B. & McDougall, R. An overview of the GTAP 9 data base. J. Glob. Econ. Anal. 1, 181–208 (2016).

    Article  Google Scholar 

  • 51.

    Van Ha, P., Kompas, T., Nguyen, H. T. M. & Long, C. H. Building a better trade model to determine local effects: a regional and intertemporal GTAP model. Econ. Model. 67, 102–113 (2017).

    Article  Google Scholar 

  • 52.

    Kompas, T., Pham, V. H. & Che, T. N. The effects of climate change on GDP by country and the global economic gains from complying with the Paris climate accord. Earth’s Future 6, 1153–1173 (2018).

    ADS  Article  Google Scholar 

  • 53.

    Horridge, J. M., Jerie, M., Mustakinov, D. & Schiffmann, F. GEMPACK manual, GEMPACK Software, ISBN 978-1–921654-34-3 (2018).

  • 54.

    Pearson, K. R. Solving Nonlinear Economic Models Accurately Via a Linear Representation. Working paper No. IP-55. Victoria University, Centre of Policy Studies (1991).

  • 55.

    Kompas, T. & Ha, P. V. The ‘curse of dimensionality’ resolved: the effects of climate change and trade barriers in large dimensional modelling. Econ. Model. 80, 103–110 (2018).

    Article  Google Scholar 

  • 56.

    Balay, S. et al. PETSc users manual, Technical Report ANL-95/11—Revision 3.11. (2019).

  • 57.

    Balay, S. et al. PETSc Web page. http://www.mcs.anl.gov/petsc (2019). Accessed 23 September 2018.

  • 58.

    Balay, S., Gropp, W. D., McInnes, L. C. & Smith, B. F. Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing (eds Arge, E. et al.) (Birkhaeuser Press, Boston, 1997).

    Google Scholar 

  • 59.

    HSL. A collection of fortran codes for large scale scientific computation. The HSL Mathematical Software Library (2013).

  • 60.

    World Bank Group. Population Estimates and Projections. http://data.worldbank.org/data-catalog/population-projection-tables (2016). Accessed 3 May 2018.

  • 61.

    Moulds, S., Buytaert, W. & Mijic, A. An open and extensible framework for spatially explicit land use change modelling: the lulcc R package. Geosci. Model Dev. 8, 3215–3229 (2015).

    ADS  Article  Google Scholar 

  • 62.

    Verburg, P. H. et al. Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ. Manag. 30, 391–405 (2002).

    ADS  Article  Google Scholar 

  • 63.

    Verburg, P. H., Veldkamp, T. & Bouma, J. Land use change under conditions of high population pressure: the case of Java. Glob. Environ. Change 9, 303–312 (1999).

    Article  Google Scholar 

  • 64.

    Verburg, P. H., Schulp, C. J. E., Witte, N. & Veldkamp, A. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agr. Ecosyst. Environ. 114, 39–56 (2006).

    Article  Google Scholar 

  • 65.

    Verburg, P. H., De Koning, G. H. J., Kok, K., Veldkamp, A. & Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model. 116, 45–61 (1999).

    Article  Google Scholar 

  • 66.

    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Soft. 33, 1–22 (2010).

    Article  Google Scholar 

  • 67.

    Steven J. P., Miroslav D., Robert E. S. [Internet] Maxent software for modeling species niches and distributions (Version 3.3.3k). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 12 December 2018.

  • 68.

    GBIF. GBIF data portal. http://www.gbif.net/ (2016). Accessed 22 May 2018.

  • 69.

    Goetz, S. J., Sun, M., Zolkos, S., Hansen, A. & Dubayah, R. The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness. Environ. Res. Lett. 9, 034013 (2014).

    ADS  Article  Google Scholar 

  • 70.

    Maggini, R. et al. Assessing species vulnerability to climate and land use change: the case of the Swiss breeding birds. Divers. Distrib. 20, 708–719 (2014).

    Article  Google Scholar 

  • 71.

    Coxen, C. L., Frey, J. K., Carleton, S. A. & Collins, D. P. Species distribution models for a migratory bird based on citizen science and satellite tracking data. Glob. Ecol. Conserv. 11, 298–311 (2017).

    Article  Google Scholar 

  • 72.

    Stolar, J. & Nielsen, S. E. Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers. Distrib. 21, 595–608 (2015).

    Article  Google Scholar 

  • 73.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed  Article  Google Scholar 

  • 74.

    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).

    PubMed  Article  Google Scholar 

  • 75.

    Morán-Ordóñez, A., Lahoz-Monfort, J. J., Elith, J. & Wintle, B. A. Evaluating 318 continental-scale species distribution models over a 60-year prediction horizon: what factors influence the reliability of predictions?. Glob. Ecol. Biogeogr. 26, 1–14 (2016).

    Google Scholar 

  • 76.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’. http://cran.r-project.org/web/packages/dismo/index.html (2011). Accessed 6 July 2017.


  • Source: Ecology - nature.com

    Reducing inequality across the globe and on campus

    George Shultz PhD ’49, renowned statesman and former professor, dies at 100