in

Assessment of potential invasion for six phytophagous quarantine pests in Taiwan

  • 1.

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econom. 52, 273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002 (2005).

    Article 

    Google Scholar 

  • 2.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623. https://doi.org/10.1098/rsbl.2015.0623 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Hulmes, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x (2009).

    Article 

    Google Scholar 

  • 4.

    Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion Ecology, 2nd ed. (Wiley-Blackwell, 2013)

  • 5.

    Wan, F. H. & Yang, N. W. Invasion and management of agricultural alien insects in China. Annu. Rev. Entomol. 61, 77–98. https://doi.org/10.1146/annurev-ento-010715-023916 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Wittenberg, R. & Cock, M. J. W. Invasive Alien Species: A Toolkit of Best Prevention and Management Practices. (CAB International, 2001)

  • 7.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).

    Article 

    Google Scholar 

  • 8.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

    Article 

    Google Scholar 

  • 9.

    Barbet-Massin, M., Rome, Q., Villemant, C. & Courchamp, F. Can species distribution models really predict the expansion of invasive species?. PLoS ONE 13, 0193085. https://doi.org/10.1371/journal.pone.0193085 (2018).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Peterson, A. T., Papes, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).

    Article 

    Google Scholar 

  • 11.

    Fourcade, Y., Engler, J. O., Rödder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 9, 97122. https://doi.org/10.1371/journal.pone.0097122 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).

    Article 

    Google Scholar 

  • 13.

    Zhang, Y., Zhang, C. B., Hao, J. H. & Gu, H. T. Prediction of potential suitable distribution area of invasive alien pest, Viteus vitifoliae Fitch in China. Chinese J. Ecol. 34, 1986–1993 (2015) (in Chinese).

    Google Scholar 

  • 14.

    Prabhulinga, T. et al. Maximum entropy modelling for predicting the potential distribution of cotton whitefly Bemisia tabaci (Gennadius) in North India. J. Entomol. Zool. Stud. 5, 1002–1006 (2017).

    Google Scholar 

  • 15.

    Anjum, H. & Ahmed, S. Y. An updated and consolidated review on Indian Aleyrodids fauna (Hemiptera: Aleyrodidae: Insecta) along with their host plant families and distributional records. Rec. Zool. Surv. India 119, 381–417 (2019).

    Google Scholar 

  • 16.

    Ouvrard, D., Martin, J. The White-files – Taxonomic checklist of the world’s whiteflies (Insecta: Hemiptera: Aleyrodidae). http://www.hemiptera-databases.org/whiteflies/ (2021)

  • 17.

    Blackman, R. L. & Eastop, V. F. Aphids on the World’s Trees: An Identification and Information Guide. (CAB International, 1994)

  • 18.

    Blackman, R. L., Eastop, V. F. Aphids on the World’s Crops: An Identification and Information Guide. Second Edition. (John Wiley & Sons, 2020)

  • 19.

    Blackman, R. L., Eastop, V. F. Aphids on the World’s Herbaceous Plants and Shrubs. (John Wiley & Sons Ltd, 2006)

  • 20.

    Hsieh, C. H. et al. Identification of a new invasive Q biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) in Taiwan by molecular markers. Formosan Entomol. 28, 211–224. https://doi.org/10.6661/TESFE.2008016 (2008) (in Chinese).

    Article 

    Google Scholar 

  • 21.

    Liu, B., Qin, W. Q. & Yan, W. Potential geographical distribution of Paraleyrodes minei (Hemiptera: Aleyrodidae) in China based on maxent model. J. Environ. Entomol. 41, 1276–1286 (2019) (in Chinese).

    Google Scholar 

  • 22.

    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction. (Cambridge University Press, 2010)

  • 23.

    Peterson, A. T. et al. Ecological Niches and Geographical Distributions (Princeton, 2011).

    Book 

    Google Scholar 

  • 24.

    Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008 (2008).

    Article 

    Google Scholar 

  • 25.

    Velasco, J. A. & Gonzalez-Salazar, C. Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecol. Inform. 51, 25–32. https://doi.org/10.1016/j.ecoinf.2019.02.005 (2019).

    Article 

    Google Scholar 

  • 26.

    Jiang, H. Y. et al. Effects of sample size on accuracy of MaxEnt: A case study of Fagus hayatae. Q. J. For. Res. 36, 101–114 (2014) (in Chinese).

    Google Scholar 

  • 27.

    Peterson, A. T. et al. Ecological Niches and Geographic Distributions. (Princeton University Press, 2011)

  • 28.

    Guan, H. Y. Fruit tree quarantine pests-Viteus vitifoliae. J. Hebei Forest Sci. Technol. 2, 38–40 (1987) (in Chinese).

    Google Scholar 

  • 29.

    Lu, J., Wang, Z. W., Wang, Z. Y. & Liao, H. L. Research progress on biological characteristics and control of Daktulosphaira vitifoliae. Jiangxi Plant Prot. 2, 51–56 (2008) (in Chinese).

    Google Scholar 

  • 30.

    Sundararaj, R., Amuthavalli, T. & Vimala, D. Invasion and establishment of the solanum whitefly Aleurothrixus trachoides (Back) (Hemiptera: Aleyrodidae) in South India. Curr. Sci. 115, 29–31 (2018).

    Article 

    Google Scholar 

  • 31.

    Martin, J. H., Agular, A. M. F. & Baufeld, P. Crenidorsum aroidephagus Martin & Aguiar sp. nov. (Sternorrhyncha: Aleyrodidae), a New World whitefly species now colonising cultivated Araceae in Europe, Macaronesia and The Pacific Region. Zootaxa 4, 1–8n. https://doi.org/10.11646/zootaxa.4.1.1 (2001).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Iaccarino, F. M. Descrizione di. Paraleyrodes minei n. sp. (Homoptera: Aleyrodidae), nuovo aleirode degli agrumi, in Siria. Boll. Lab. Entomol. Agrar. Portici 46, 131–149 (1990) (in Italian).

    Google Scholar 

  • 33.

    Palumbo, J. C. Seasonal abundance and control of the lettuce aphid, Nasonovia ribisnigri, on head lettuce in Arizona. https://repository.arizona.edu/handle/10150/220018 (2000)

  • 34.

    Palumbo, J. C. Population growth of lettuce aphid, Nasonovia ribisnigri, on resistant butter and head lettuce cultivars. https://repository.arizona.edu/handle/10150/214949 (2002)

  • 35.

    Diaz, B. M. & Fereres, A. life table and population parameters of Nasonovia ribisnigri (Homoptera: Aphididae) at different constant temperatures. Environ. Entomol. 34, 527–534. https://doi.org/10.1603/0046-225X-34.3.527 (2005).

    Article 

    Google Scholar 

  • 36.

    Feeley, K. J. & Silman, M. R. Keep collecting: Accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140. https://doi.org/10.1111/j.1472-4642.2011.00813.x (2011).

    Article 

    Google Scholar 

  • 37.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197. https://doi.org/10.1890/07-2153.1 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 38.

    Naimi, B., Skidmore, A. K., Thomas, A. G. & Nicholas, A. S. H. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. J. Biogeogr. 38, 1497–1509. https://doi.org/10.1111/j.1365-2699.2011.02523.x (2011).

    Article 

    Google Scholar 

  • 39.

    Fitzpatrick, M. C., Gotelli, N. J. & Ellison, A. M. MaxEnt versus MaxLike: empirical comparisons with ant species distribution. Ecosphere 4, 1–15. https://doi.org/10.1890/ES13-00066.1 (2013).

    Article 

    Google Scholar 

  • 40.

    Yackulic, B. C. et al. Presence-only modelling using MAXENT: when can we trust the inferences. Methods Ecol. Evol. 4, 236–243. https://doi.org/10.1111/2041-210x.12004 (2013).

    Article 

    Google Scholar 

  • 41.

    Araujo, M. B. & Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 33, 1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x (2006).

    Article 

    Google Scholar 

  • 42.

    Halvorsen, R., Mazzoni, S., Bryn, A. & Bakkestuen, V. Opportunities for improved distribution modelling practice via a strict maximum likelihood interpretation of MaxEnt. Ecography 38, 172–183. https://doi.org/10.1111/ecog.00565 (2015).

    Article 

    Google Scholar 

  • 43.

    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).

    Article 

    Google Scholar 

  • 44.

    Byeon, D.-A., Jung, S. & Lee, W.-H. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J. Asia Pac. Biodivers. 11, 325–333. https://doi.org/10.1016/j.japb.2018.06.002 (2018).

    Article 

    Google Scholar 

  • 45.

    Ma, F. et al. The potential geographical distribution of Daktulosphaira vitifoliae based on CLIMEX in China. J. Environ. Entomol. 36, 293–297 (2014) (in Chinese).

    Google Scholar 

  • 46.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2019)

  • 47.

    Phillips, S. J. A brief tutorial on Maxent. http://biodiversityinformatics.amnh.org/open_source/maxent/ (2017)

  • 48.

    Fick, S. E. & Hijmans, R. J. WorldClim 2, New 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).

    Article 

    Google Scholar 

  • 49.

    De Meyer, M. et al. Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae). Bull. Entomol. Res. 100, 35–48. https://doi.org/10.1017/S0007485309006713 (2010).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Bidinger, K., Loetters, S. & Roedder, D. Species distribution models for the alien invasive asian harlequin ladybird (Harmonia axyridis). J. Appl. Entomol. 136, 109–123. https://doi.org/10.1111/j.1439-0418.2010.01598 (2012).

    Article 

    Google Scholar 

  • 51.

    Hijmans, R. Package “raster”. http://raster.r-forge.r-project.org/ (2011)

  • 52.

    Bivand, R., Keitt, T. & Rowlingson, B. Package “rgdal” https://CRAN.R-project.org/package=rgdal (2015)

  • 53.

    Phillips, S. J., Dudik, M. & Schapire, R.E. Maxent software for modeling species niches and distribution (version 3.4.1) https://biodiversityinformatics.amnh.org/open_source/maxent/

  • 54.

    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’ http://cran.r-project.org/web/packages/dismo/index.html (2011)

  • 55.

    Muscarella, R. et al. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205. https://doi.org/10.1111/2041-210X.12261 (2014).

    Article 

    Google Scholar 

  • 56.

    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29, 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x (2006).

    Article 

    Google Scholar 

  • 57.

    Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789. https://doi.org/10.1111/jbi.12058 (2013).

    Article 

    Google Scholar 

  • 58.

    Kumar, S., Neven, L. G., Zhu, H. & Zhang, R. Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. J. Econ. Entomol. 108, 1708–1719. https://doi.org/10.1093/jee/tov166 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 59.

    Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 (2014).

    Article 

    Google Scholar 

  • 60.

    Yeh, H. T., Ko, C. C. & Hsu, T. C. Diagnostic techniques for the quarantine pest, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae). Formosan Entomol. 26, 283–293 (2006) (in Chinese).

    Google Scholar 

  • 61.

    Benheim, D. et al. Grape phylloxera (Daktulospharia vitifoliae)-a review of potential detection and alternative management options. Ann. Appl. Biol. 161, 91–115 (2012).

    CAS 
    Article 

    Google Scholar 

  • 62.

    CABI. Invasive Species Compendium. https://www.cabi.org/ISC (2018)

  • 63.

    Sujithra, M., Rajkumar, P. V. H., Hegde, V. & Poorani, J. Occurrence of nesting whitefly Paraleyrodes minei Iaccarino (Hemiptera: Aleyrodidae) in India. Indian J. Entomol. 81, 1–4 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Seasonal change is a major driver of soil resistomes at a watershed scale

    The future of the IoT (batteries not required)